Skip to main content

Initial microbial status modulates mycorrhizal inoculation effect on rhizosphere microbial communities

Abstract

Arbuscular mycorrhizal fungi (AMF) play a central role in rhizosphere functioning as they interact with both plants and soil microbial communities. The conditions in which AMF modify plant physiology and microbial communities in the rhizosphere are still poorly understood. In the present study, four different plant species, (clover, alfalfa, ryegrass, tall fescue) were cultivated in either sterilized (γ ray) or non-sterilized soil and either inoculated with a commercial AMF (Glomus LPA Val 1.) or not. After 20 weeks of cultivation, the mycorrhizal rate and shoot and root biomasses were measured. The abundance and composition of bacteria, archaea, and fungi were analyzed, respectively, by quantitative PCR (qPCR) and fingerprinting techniques. Whilst sterilization did not change the AMF capacity to modify plant biomass, significant changes in microbial communities were observed, depending on the taxon and the associated plant. AMF inoculation decreases both bacterial and archaeal abundance and diversity, with a greatest extent in sterilized samples. These results also show that AMF exert different selections on soil microbial communities according to the plant species they are associated with. This study suggests that the initial abundance and diversity of rhizosphere microbial communities should be considered when introducing AMF to cultures.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Albertsen A, Ravnskov S, Green H, Jensen DF, Larsen J (2006) Interactions between the external mycelium of the mycorrhizal fungus Glomus intraradices and other soil microorganisms as affected by organic matter. Soil Biol Biochem 38(5):1008–1014

    Article  CAS  Google Scholar 

  • Andrade G, Mihara K, Linderman R, Bethlenfalvay G (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192:71–79

    Article  CAS  Google Scholar 

  • Andrade G, Linderman RG, Bethlenfalvay GJ (1998a) Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae. Plant Soil 202(1):79–87

    Article  CAS  Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1998b) Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202(1):89–96

    Article  CAS  Google Scholar 

  • Artursson V (2005) Bacterial-fungal interactions highlighted using microbiomics. Uppsala : Sveriges lantbruksuniv. Acta Universitatis Agriculturae Sueciae, vol 2005. No. 127

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11(1):3–42

    Article  Google Scholar 

  • Azcón R, Rubio R, Barea JM (1991) Selective interactions between different species of mycorrhizal fungi and Rhizobium meliloti strains, and their effects on growth, N2-fixation (15N) and nutrition of Medicago sativa L. New Phytol 117(3):399–404

    Article  PubMed  Google Scholar 

  • Baldwin IL, Fred EB (1929) Nomenclature of the root-nodule bacteria of the Leguminosae. J Bacteriol 17(2):141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balser TC, Kinzig AP, Firestone MK (2002) Linking soil microbial communities and ecosystem functioning. In: The functional consequences of biodiversity: empirical progress and theoretical extensions. Princeton University Press, Princeton, pp 265–293

    Google Scholar 

  • Battini F, Cristani C, Giovannetti M, Agnolucci M (2016) Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices. Microbiol Res 183:68–79

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  CAS  PubMed  Google Scholar 

  • Biró B, Köves-Péchy K, Vörös I, Takács T, Eggenberger P, Strasser RJ (2000) Interrelations between Azospirillum and rhizobium nitrogen-fixers and arbuscular mycorrhizal fungi in the rhizosphere of alfalfa in sterile, AMF-free or normal soil conditions. Appl Soil Ecol 15(2):159–168

    Article  Google Scholar 

  • Blaud A, Phoenix GK, Osborn AM (2015) Variation in bacterial, archaeal and fungal community structure and abundance in high Arctic tundra soil. Polar Biol 38(7):1009–1024

    Article  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48

    Article  PubMed  CAS  Google Scholar 

  • Bowen HJM, Cawse PA (1964) Some effects of gamma radiation on the composition of the soil solution and soil organic matter. Soil Sci 98(6):358–361

    Article  CAS  Google Scholar 

  • Brulé C, Frey-Klett P, Pierrat JC, Courrier S, Gérard F, Lemoine MC, Garbaye J (2001) Survival in the soil of the ectomycorrhizal fungus Laccaria bicolor and the effects of a mycorrhiza helper Pseudomonas fluorescens. Soil Biol Biochem 33(12–13):1683–1694

    Article  Google Scholar 

  • Burns JH, Anacker BL, Strauss SY, Burke DJ (2015) Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus. AoB Plants 7

  • Callaway RM, Thelen GC, Rodriguez A, Holben WE (2004) Soil biota and exotic plant invasion. Nature 427(6976):731–733

    Article  CAS  PubMed  Google Scholar 

  • Campos-Soriano L, García-Martínez J, San Segundo B (2012) The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol Plant Pathol 13(6):579–592.13:579

    Article  CAS  PubMed  Google Scholar 

  • Camprubi A, Calvet C, Estaun V (1995) Growth enhancement of Citrus reshni after inoculation with Glomus intraradices and Trichoderma aureoviride and associated effects on microbial populations and enzyme activity in potting mixes. Plant Soil 173(2):233–238

    Article  CAS  Google Scholar 

  • Carvalhais LC, Dennis PG, Badri DV, Kidd BN, Vivanco JM, Schenk PM (2015) Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Mol Plant-Microbe Interact 28(9):1049–1058

    Article  CAS  PubMed  Google Scholar 

  • Cavagnaro TR, Jackson LE, Six J, Ferris H, Goyal S, Asami D, Scow KM (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil 282(1–2):209–225

    Article  CAS  Google Scholar 

  • Cecatto AP, Calvete EO, Escosteguy PAV, De Nardi FS, dos Santos FL (2014) Effect of substrate sterilization with mycorrhizal inoculation on strawberry growth. Vii Congreso Iberico De Agroingenieria Y Ciencias Horticolas: Innovar Y Producir Para El Futuro Innovating and Producing for the Future, pp 1681–1685

  • Changey F, Bagard M, Souleymane M, Lerch TZ (2018) Cascading effects of elevated ozone on wheat rhizosphere microbial communities depend on temperature and cultivar sensitivity. Environ Pollut 242:113–125

    Article  CAS  PubMed  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deveau A (2016) How does the tree root microbiome assemble? Influence of ectomycorrhizal species on Pinus sylvestris root bacterial communities. Environ Microbiol 18:1303–1305

    Article  PubMed  Google Scholar 

  • Duponnois R, Galiana A, Prin Y (2008) The mycorrhizosphere effect: a multitrophic interaction complex improves mycorrhizal symbiosis and plant growth. In: Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 227–240

    Chapter  Google Scholar 

  • Eom AH, Hartnett DC, Wilson GW (2000) Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122(3):435–444

    Article  PubMed  Google Scholar 

  • Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG (2012) Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc Natl Acad Sci 109(52):21390–21395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MT (2018) Assembly and ecological function of the root microbiome across angiosperm plant species. Proc Natl Acad Sci 115(6):E1157–E1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fontaine S, Mariotti A, Abbadie L (2003) The priming effect of organic matter: a question of microbial competition? Soil Biol Biochem 35(6):837–843

    Article  CAS  Google Scholar 

  • Franklin RB, Garland JL, Bolster CH, Mills AL (2001) Impact of dilution on microbial community structure and functional potential: comparison of numerical simulations and batch culture experiments. Appl Environ Microbiol 67:702–712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frey-Klett P, Garbaye JA, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176(1):22–36

    Article  CAS  PubMed  Google Scholar 

  • Garbaye J (1994) Tansley review no. 76 helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  CAS  PubMed  Google Scholar 

  • Gavito ME, Jakobsen I, Mikkelsen TN, Mora F (2019) Direct evidence for modulation of photosynthesis by an arbuscular mycorrhiza-induced carbon sink strength. New Phytol

  • Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol 119:329–339

    Article  CAS  Google Scholar 

  • Graham JH (1982) Effect of citrus root exudates on germination of chlamydospores of the vesicular-arbuscular mycorrhizal fungus, Glomus epigaeum. Mycologia 74(5):831–835

    Article  Google Scholar 

  • Halsey JA, de Cássia Pereira ESM, Andreote FD (2016) Bacterial selection by mycospheres of Atlantic rainforest mushrooms. Antonie Van Leeuwenhoek 109(10):1353–1365

    Article  PubMed  Google Scholar 

  • Hiltner L (1904) Uber neure Erfahrungen und probleme auf dem gebeit der bodenbackteriologie und unter besonderer berucksichtigung der grundungung und brache. Arb

  • Hodge A (2000) Microbial ecology of the arbuscular mycorrhiza. FEMS Microbiol Ecol 32(2):91–96

    Article  CAS  PubMed  Google Scholar 

  • Horii S, Ishii T (2006) Identification and function of Gigaspora margarita growth-promoting microorganisms. Symbiosis 41:135–141

    CAS  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea J-M (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Article  Google Scholar 

  • Johnson D, Ijdo M, Genney DR, Anderson IC, Alexander IJ (2005) How do plants regulate the function, community structure, and diversity of mycorrhizal fungi? J Exp Bot 56(417):1751–1760

    Article  CAS  PubMed  Google Scholar 

  • Karlsson AE, Johansson T, Bengtson P (2012) Archaeal abundance in relation to root and fungal exudation rates. FEMS Microbiol Ecol 80(2):305–311

    Article  CAS  PubMed  Google Scholar 

  • Kaschuk G, Kuyper TW, Leffelaar PA, Hungria M, Giller KE (2009) Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol Biochem 41(6):1233–1244

    Article  CAS  Google Scholar 

  • Koske R, Gemma J (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–488

    Article  Google Scholar 

  • Kumar R, Pandey S, Pandey A (2006) Plant roots and carbon sequestration. Curr Sci 91:885–890

    CAS  Google Scholar 

  • Lennon JT, Aanderud ZT, Lehmkuhl BK, Schoolmaster DR Jr (2012) Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93(8):1867–1879

    Article  PubMed  Google Scholar 

  • Linderman R (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. J Phytopathol 78:366–371

    Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50(3):529–544

    Article  CAS  PubMed  Google Scholar 

  • López-Gutiérrez JC, Henry S, Hallet S, Martin-Laurent F, Catroux G, Philippot L (2004) Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR. J Microbiol Methods 57(3):399–407

    Article  PubMed  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Marschner P, Timonen S (2006) Bacterial community composition and activity in rhizosphere of roots colonized by arbuscular mycorrhizal fungi. In: Microbial activity in the Rhizoshere. Springer, Berlin, Heidelberg, pp 139–154

    Chapter  Google Scholar 

  • McGonigle T, Miller M, Evans D, Fairchild G, Swan J (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  CAS  PubMed  Google Scholar 

  • McNamara N, Black H, Beresford N, Parekh NJASE (2003) Effects of acute gamma irradiation on chemical, physical and biological properties of soils. Appl Soil Ecol 24(2):117–132

    Article  Google Scholar 

  • Meglouli H, Sahraoui ALH, Magnin-Robert M, Tisserant B, Hijri M, Fontaine J (2018) Arbuscular mycorrhizal inoculum sources influence bacterial, archaeal, and fungal communities’ structures of historically dioxin/furan-contaminated soil but not the pollutant dissipation rate. Mycorrhiza 28(7):635

    Article  CAS  PubMed  Google Scholar 

  • Morris SJ, Boerner REJ (1999) Spatial distribution of fungal and bacterial biomass in southern Ohio hardwood forest soils: scale dependency and landscape patterns. Soil Biol Biochem 31:887–902

    Article  CAS  Google Scholar 

  • Muyzer G, De Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C (2003) Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol 5(9):787–797

    Article  CAS  PubMed  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55(1):158–IN18

    Article  Google Scholar 

  • Qin H, Brookes PC, Xu J (2016) Arbuscular mycorrhizal fungal hyphae alter soil bacterial community and enhance polychlorinated biphenyls dissipation. Front Microbiol 7:939

    PubMed  PubMed Central  Google Scholar 

  • Ramsay AJ, Bawden AD (1983) Effects of sterilization and storage on respiration, nitrogen status and direct counts of soil bacteria using acridine orange. Soil Biol Biochem 15(3):263–268

    Article  CAS  Google Scholar 

  • Rousk J, Bååth E (2007) Fungal and bacterial growth in soil with plant materials of different C/N ratios. FEMS Microbiol Ecol 62:258–267

    Article  CAS  PubMed  Google Scholar 

  • Rousk J, Demoling LA, Bahr A, Bååth E (2008) Examining the fungal and bacterial niche overlap using selective inhibitors in soil. FEMS Microbiol Ecol 63(3):350–358

    Article  CAS  PubMed  Google Scholar 

  • Ryan MH, Graham JH (2002) Is there a role for arbuscular mycorrhizal fungi in production agriculture? Plant Soil 244:263–271

    Article  CAS  Google Scholar 

  • Saia S, Ruisi P, Fileccia V, Di Miceli G, Amato G, Martinelli F (2015) Metabolomics suggests that soil inoculation with arbuscular mycorrhizal fungi decreased free amino acid content in roots of durum wheat grown under N-limited, P-rich field conditions. PLoS One 10:e0129591

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scheublin TR, Sanders IR, Keel C, Van Der Meer JR (2010) Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J 4(6):752–763

    Article  PubMed  Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic press

  • Söderberg KH, Olsson PA, Bååth E (2002) Structure and activity of the bacterial community in the rhizosphere of different plant species and the effect of arbuscular mycorrhizal colonisation. FEMS Microbiol Ecol 40(3):223–231

    Article  PubMed  Google Scholar 

  • Solís-Domínguez FA, Valentín-Vargas A, Chorover J, Maier RM (2011) Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Sci Total Environ 409(6):1009–1016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song YY, Cao M, Xie LJ, Liang XT, Zeng RS, Su YJ, Huang JH, Wang RL, Luo SM (2011) Induction of DIMBOA accumulation and systemic defense responses as a mechanism of enhanced resistance of mycorrhizal corn (Zea mays L.) to sheath blight. Mycorrhiza 21:721–731

    Article  CAS  PubMed  Google Scholar 

  • Srivastava R, Khalid A, Singh US, Sharma AK (2010) Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biol Control 53(1):24–31

    Article  Google Scholar 

  • Sylvia DM, Williams SE (1992) Vesicular–arbuscular mycorrhizae and environmental stresses. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. ASA no 54, Madison, pp 101–124

    Google Scholar 

  • Toljander JF, Lindahl BD, Paul LR, Elfstrand M, Finlay RD (2007) Influence of arbuscular mycorrhizal mycelial exudates on soil bacterial growth and community structure. FEMS Microbiol Ecol 61(2):295–304

    Article  CAS  PubMed  Google Scholar 

  • Tuason MMS, Arocena JM (2009) Root organic acid exudates and properties of rhizosphere soils of white spruce (Picea glauca) and subalpine fir (Abies lasiocarpa). Can J Soil Sci 89(3):287–300

    Article  CAS  Google Scholar 

  • Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11(8):1555–1564

    Article  CAS  PubMed  Google Scholar 

  • Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26(1):379–407

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for hylogenetics. PCR Protocols: A Guide to Methods and Applications 18:315–322.

Download references

Funding

This work has been carried out in the Halluin3R project, which is financed by the European Union (FEDER), the French Region of Hauts-de-France, and the French Environment and Energy Management Agency (ADEME) and in the framework of the Alibiotech project which is financed by the European Union, the French State, and the French Region of Hauts-de-France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédérique Changey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 265 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Changey, F., Meglouli, H., Fontaine, J. et al. Initial microbial status modulates mycorrhizal inoculation effect on rhizosphere microbial communities. Mycorrhiza 29, 475–487 (2019). https://doi.org/10.1007/s00572-019-00914-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-019-00914-1

Keywords