Arbuscular mycorrhizal fungal inoculation and soil zinc fertilisation affect the productivity and the bioavailability of zinc and iron in durum wheat

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

There is a growing recognition of the role of arbuscular mycorrhizal fungi (AMF) in food security, specifically the potential for AMF to enhance the yield and mineral nutrition—including phosphorus, zinc (Zn), and iron (Fe)—of food crops. However, the bioavailability of Zn and Fe for humans in the grain of cereal crops can be overestimated by failing to consider the abundance of phytic acid (PA). This is because PA can chelate the micronutrients, making them difficult to absorb. In order to understand the effect of an AM fungus and soil Zn concentration on the productivity and nutritional quality of food parts, this study examined the growth and nutritional responses of durum wheat, with and without inoculation with Rhizophagus irregularis, at five soil Zn concentrations. Growth and nutrient responses of the plants to soil Zn amendment was stronger than responses to AMF. However, the protective effect of AMF under soil Zn toxicity conditions was observed as reduced Zn concentration in the mycorrhizal durum wheat grain at Zn50. Here, AMF inoculation increased the concentration of PA in durum wheat grain but had no effect on the concentration of Zn and Fe; this consequently reduced the predicted bioavailability of grain Zn and Fe, which could lead to a decrease in nutritional quality of the grain. This research suggests that in soil with low (available) phosphorus and Zn concentrations, AMF may reduce the food quality of durum wheat because of an increase in PA concentration, and thus, a decrease in the bioavailability of Zn and Fe.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Augé RM (2000) Stomatal behavior of arbuscular mycorrhizal plants. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 201–237. https://doi.org/10.1007/978-94-017-0776-3_10

    Google Scholar 

  2. Azcon R, Ambrosano E, Charest C (2003) Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Sci 165:1137–1145. https://doi.org/10.1016/s0168-9452(03)00322-4

    CAS  Article  Google Scholar 

  3. Baon JB, Smith SE, Alston AM (1993) Mycorrhizal responses of barley cultivars differing in P efficiency. Plant Soil 157:97–105

    Google Scholar 

  4. Baslam M, Garmendia I, Goicoechea N (2011a) Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. J Agric Food Chem 59:5504–5515. https://doi.org/10.1021/jf200501c

    CAS  Article  PubMed  Google Scholar 

  5. Baslam M, Pascual I, Sánchez-Díaz M, Erro J, García-Mina JM, Goicoechea N (2011b) Improvement of nutritional quality of greenhouse-grown lettuce by arbuscular mycorrhizal fungi is conditioned by the source of phosphorus nutrition. J Agric Food Chem 59:11129–11140

    CAS  PubMed  Google Scholar 

  6. Baum C, El-Tohamy W, Gruda N (2015) Increasing the productivity and product quality of vegetable crops using arbuscular mycorrhizal fungi: a review. Sci Hortic 187:131–141

    Google Scholar 

  7. Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559

    PubMed  PubMed Central  Google Scholar 

  8. Bowles TM, Barrios-Masias FH, Carlisle EA, Cavagnaro TR, Jackson LE (2016) Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Sci Total Environ 566:1223–1234

    PubMed  Google Scholar 

  9. Bowles TM, Jackson LE, Loeher M, Cavagnaro TR (2017) Ecological intensification and arbuscular mycorrhizas: a meta-analysis of tillage and cover crop effects. J Appl Ecol 54:1785–1793

    Google Scholar 

  10. Cakmak I (2009) Biofortification of cereal grains with zinc by applying zinc fertilizers. Biozoom 1:2–7

    Google Scholar 

  11. Cavagnaro TR (2008) The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant Soil 304:315–325

    CAS  Google Scholar 

  12. Cavagnaro TR, Dickson S, Smith FA (2010) Arbuscular mycorrhizas modify plant responses to soil zinc addition. Plant Soil 329:307–313. https://doi.org/10.1007/s11104-009-0158-z

    CAS  Article  Google Scholar 

  13. Chaney RL (1993) Zinc phytotoxicity. In: Robson AD (ed) Zinc in soils and plants. Kluwer Academic, Dordrecht, pp 135–150. https://doi.org/10.1007/978-94-011-0878-2_10

    Google Scholar 

  14. Chen BD, Li XL, Tao HQ, Christie P, Wong MH (2003) The role of arbuscular mycorrhiza in zinc uptake by red clover growing in a calcareous soil spiked with various quantities of zinc. Chemosphere 50:839–846. https://doi.org/10.1016/S0045-6535(02)00228-X

    CAS  Article  PubMed  Google Scholar 

  15. Coccina A, Cavagnaro TR, Pellegrino E, Ercoli L, McLaughlin MJ, Watts-Williams SJ (2019) The mycorrhizal pathway of zinc uptake contributes to zinc accumulation in barley and wheat grain. BMC Plant Biol 19:133

    PubMed  PubMed Central  Google Scholar 

  16. Dutt S, Sharma SD, Kumar P (2013) Arbuscular mycorrhizas and Zn fertilization modify growth and physiological behavior of apricot (Prunus armeniaca L.). Sci Hortic 155:97–104. https://doi.org/10.1016/j.scienta.2013.03.012

    Article  Google Scholar 

  17. Ercoli L, Schussler A, Arduini I, Pellegrino E (2017) Strong increase of durum wheat iron and zinc content by field-inoculation with arbuscular mycorrhizal fungi at different soil nitrogen availabilities. Plant Soil 419:153–167. https://doi.org/10.1007/s11104-017-3319-5

    CAS  Article  Google Scholar 

  18. FAO (2013) The state of food and agriculture. Food and Agriculture Organization, Rome

    Google Scholar 

  19. FAO (2018) The state of food security and nutrition in the world 2018. Building climate resilience for food security and nutrition. Food and Agriculture Organization, Rome

    Google Scholar 

  20. FAO, WHO (2011) Working document for information and use in discussions related to contaminants and toxins in the GSCTFF, CF/5 INF/1. vol 5. The Hague, The Netherlands

  21. Field KJ, Cameron DD, Leake JR, Tille S, Bidartondo MI, Beerling DJ (2012) Contrasting arbuscular mycorrhizal responses of vascular and non-vascular plants to a simulated palaeozoic CO2 decline. Nat Commun 3:835

    PubMed  Google Scholar 

  22. Frassinetti S, Bronzetti GL, Caltavuturo L, Cini M, Della Croce C (2006) The role of zinc in life: a review. J Environ Pathol Toxicol Oncol 25:597–610

    CAS  PubMed  Google Scholar 

  23. FSANZ ANZFS (2003) The 20th Australian total diet survey. Food Standards Australia New Zealand

  24. Garg N, Chandel S (2011) Effect of mycorrhizal inoculation on growth, nitrogen fixation, and nutrient uptake in Cicer arietinum (L.) under salt stress. Turk J Agric For 35:205–214. https://doi.org/10.3906/tar-0908-12

    CAS  Article  Google Scholar 

  25. Gibson RS (2006) Zinc: the missing link in combating micronutrient malnutrition in developing countries. Proc Nutr Soc 65:51–60

    CAS  PubMed  Google Scholar 

  26. Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

    Article  Google Scholar 

  27. Giovannetti M, Avio L, Barale R, Ceccarelli N, Cristofani R, Iezzi A, Mignolli F, Picciarelli P, Pinto B, Reali D, Sbrana C, Scarpato R (2012) Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. Br J Nutr 107:242–251

    CAS  PubMed  Google Scholar 

  28. Glahn RP, Wortley GM, South PK, Miller DD (2002) Inhibition of iron uptake by phytic acid, tannic acid, and ZnCl2: studies using an in vitro digestion/Caco-2 cell model. J Agric Food Chem 50:390–395

    CAS  PubMed  Google Scholar 

  29. Goicoechea N, Antolín MC (2017) Increased nutritional value in food crops. Microb Biotechnol 10:1004–1007

    PubMed  PubMed Central  Google Scholar 

  30. Goicoechea N, Bettoni MM, Fuertes-Mendizabal T, González-Murua C, Aranjuelo I (2016) Durum wheat quality traits affected by mycorrhizal inoculation, water availability and atmospheric CO2 concentration. Crop Pasture Sci 67:147–155

    CAS  Google Scholar 

  31. Harikumar VS (2017) A new method of propagation of arbuscular mycorrhizal fungi in field cropped sesame (Sesamum indicum L.). Symbiosis:1–4. https://doi.org/10.1007/s13199-017-0482-7

    Google Scholar 

  32. Hídvégi M, Lásztity R (2002) Phytic acid content of cereals and legumes and interaction with proteins. Period Polytech 46:59–64

    Google Scholar 

  33. Hurrell R, Egli I (2010) Iron bioavailability and dietary reference values. Am J Clin Nutr 91:1461S–1467S

    CAS  PubMed  Google Scholar 

  34. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135:575–585. https://doi.org/10.1046/j.1469-8137.1997.00729.x

    Article  Google Scholar 

  35. Johnson NC, Wilson GWT, Wilson JA, Miller RM, Bowker MA (2015) Mycorrhizal phenotypes and the law of the minimum. New Phytol 205:1473–1484. https://doi.org/10.1111/nph.13172

    CAS  Article  PubMed  Google Scholar 

  36. Jung MC, Thornton L (1997) Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb-Zn mine in Korea. Sci Total Environ 198:105–121. https://doi.org/10.1016/S0048-9697(97)05434-X

    CAS  Article  PubMed  Google Scholar 

  37. Konieczny A, Kowalska I (2017) Effect of arbuscular mycorrhizal fungi on the content of zinc in lettuce grown at two phosphorus levels and an elevated zinc level in a nutrient solution. J Elem 22:761–772. https://doi.org/10.5601/jelem.2016.21.4.1335

    Article  Google Scholar 

  38. Lehmann A, Rillig MC (2015) Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops–a meta-analysis. Soil Biol Biochem 81:147–158

    CAS  Google Scholar 

  39. Lehmann A, Veresoglou SD, Leifheit EF, Rillig MC (2014) Arbuscular mycorrhizal influence on zinc nutrition in crop plants–a meta-analysis. Soil Biol Biochem 69:123–131

    CAS  Google Scholar 

  40. Lewis JD, Koide RT (1990) Phosphorus supply, mycorrhizal infection and plant offspring vigour. Funct Ecol 4:695–702. https://doi.org/10.2307/2389738

    Article  Google Scholar 

  41. Li H, Smith SE, Holloway RE, Zhu Y, Smith FA (2006) Arbuscular mycorrhizal fungi contribute to phosphorus uptake by wheat grown in a phosphorus-fixing soil even in the absence of positive growth responses. New Phytol 172:536–543

    CAS  PubMed  Google Scholar 

  42. Ma X, Wanqing L, Li J, Wu F (2019) Arbuscular mycorrhizal fungi increase both concentrations and bioavilability of Zn in wheat (Triticum aestivum L) grain on Zn-spiked soils. Appl Soil Ecol 135:91–97. https://doi.org/10.1016/j.apsoil.2018.11.007

    Article  Google Scholar 

  43. Maenz DD, Engele-Schaan CM, Newkirk RW, Classen HL (1999) The effect of minerals and mineral chelators on the formation of phytase-resistant and phytase-susceptible forms of phytic acid in solution and in a slurry of canola meal. Anim Feed Sci Technol 81:177–192

    CAS  Google Scholar 

  44. Magallanes-López AM et al (2017) Variability in iron, zinc and phytic acid content in a worldwide collection of commercial durum wheat cultivars and the effect of reduced irrigation on these traits. Food Chem 237:499–505 https://ac.els-cdn.com/S0308814617309123/1-s2.0-S0308814617309123-main.pdf?_tid=a6e89be1-5b41-4a19-b5f7-144547a42ce6&acdnat=1542766111_1d7f59593b21876f66481b31b7229cc1

    PubMed  PubMed Central  Google Scholar 

  45. Miller RO (1998) Microwave digestion of plant tissue in a closed vessel. In: Kalra YP (ed) Handbook and reference methods for plant analysis. CRC Press, New York, pp 69–74

    Google Scholar 

  46. Mnasri M, Janouskova M, Rydlova J, Abdelly C, Ghnaya T (2017) Comparison of arbuscular mycorrhizal fungal effects on the heavy metal uptake of a host and a non-host plant species in contact with extraradical mycelial network. Chemosphere 171:476–484. https://doi.org/10.1016/j.chemosphere.2016.12.093

    CAS  Article  PubMed  Google Scholar 

  47. Pellegrino E, Öpik M, Bonari E, Ercoli L (2015) Responses of wheat to arbuscular mycorrhizal fungi: a meta-analysis of field studies from 1975 to 2013. Soil Biol Biochem 84:210–217

    CAS  Google Scholar 

  48. Peverill K, Sparrow L, Reuter D (1999) Soil analysis: an interpretation manual. CSIRO publishing

  49. Porcel R, Aroca R, Ruiz-Lozano JM (2012) Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agron Sustain Dev 32:181–200

    CAS  Google Scholar 

  50. Reddy NR (2001) Occurrence, distribution, content, and dietary intake of phytate. In: Food Phytates. CRC Press, pp 41–68

  51. Rillig MC et al. (2019) Why farmers should manage the arbuscular mycorrhizal symbiosis: a response to Ryan & Graham (2018) ‘little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops’. New Phytol in press https://doi.org/10.1111/nph.15602

    PubMed  Google Scholar 

  52. Rouphael Y, Cardarelli M, Di Mattia E, Tullio M, Rea E, Colla G (2010) Enhancement of alkalinity tolerance in two cucumber genotypes inoculated with an arbuscular mycorrhizal biofertilizer containing Glomus intraradices. Biol Fertil Soils 46:499–509

    Google Scholar 

  53. Ryan MH, Graham JH (2018) Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol 220:1092–1107

    PubMed  Google Scholar 

  54. Ryan MH, McInerney JK, Record IR, Angus JF (2008) Zinc bioavailability in wheat grain in relation to phosphorus fertiliser, crop sequence and mycorrhizal fungi. J Sci Food Agric 88:1208–1216. https://doi.org/10.1002/jsfa.3200

    CAS  Article  Google Scholar 

  55. Smith SE, Read DJ (2008) Mycorrhizas in agriculture, horticulture and forestry. In: Smith SE, Read D (eds) Mycorrhizal symbiosis, 3rd edn. Academic Press, Oxford, pp 611–636. https://doi.org/10.1016/B978-012370526-6.50019-2

    Google Scholar 

  56. Subramanian KS, Balakrishnan N, Senthil N (2013) Mycorrhizal symbiosis to increase the grain micronutrient content in maize. Agron sustain dev 7:900 http://www.cropj.com/subramanian_7_7_2013_900_910.pdf

  57. Takkar PN, Mann MS (1978) Toxic levels of soil and plant zinc for maize and wheat. Plant Soil 49:667–669. https://doi.org/10.1007/BF02183293

    CAS  Article  Google Scholar 

  58. Tawaraya K (2003) Arbuscular mycorrhizal dependency of different plant species and cultivars. Soil Sci Plant Nutr 49:655–668

    Google Scholar 

  59. Thirkell TJ, Charters MD, Elliott AJ, Sait SM, Field KJ (2017) Are mycorrhizal fungi our sustainable saviours? Considerations for achieving food security. J Ecol 105:921–929

    CAS  Google Scholar 

  60. Torres N, Antolín MC, Goicoechea N (2018) Arbuscular mycorrhizal symbiosis as a promising resource for improving berry quality in grapevines under changing environments. Front Plant Sci 9:897

    PubMed  PubMed Central  Google Scholar 

  61. Tran BTT, Watts-Williams SJ, Cavagnaro TR (2019) Impact of an arbuscular mycorrhizal fungus forming arbuscular mycorrhizas on the growth and nutrition of fifteen crop and pasture plant species. Funct Plant Biol 46:732–742

    Google Scholar 

  62. van der Heijden MGA (2003) Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search of underlying mechanisms and general principles. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, Heidelberg, pp 243–265. https://doi.org/10.1007/978-3-540-38364-2_10

    Google Scholar 

  63. Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Walder F, van der Heijden MGA (2015) Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nat Plants 1:15159. https://doi.org/10.1038/nplants.2015.159

    CAS  Article  PubMed  Google Scholar 

  65. Wang Y-y et al (2014) Improved yield and Zn accumulation for rice grain by Zn fertilization and optimized water management. J Zhejiang Univ Sci B 15:365–374

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Watts-Williams SJ, Cavagnaro TR (2018) Arbuscular mycorrhizal fungi increase grain zinc concentration and modify the expression of root ZIP transporter genes in a modern barley (Hordeum vulgare) cultivar. Plant Sci 274:163–170. https://doi.org/10.1016/j.plantsci.2018.05.015

    CAS  Article  PubMed  Google Scholar 

  67. Watts-Williams SJ, Patti AF, Cavagnaro TR (2013) Arbuscular mycorrhizas are beneficial under both deficient and toxic soil zinc conditions. Plant Soil 371:299–312

    CAS  Google Scholar 

  68. Watts-Williams SJ, Smith FA, McLaughlin MJ, Patti AF, Cavagnaro TR (2015) How important is the mycorrhizal pathway for plant Zn uptake? Plant Soil 390:157–166. https://doi.org/10.1007/s11104-014-2374-4

    CAS  Article  Google Scholar 

  69. Watts-Williams SJ, Tyerman SD, Cavagnaro TR (2017) The dual benefit of arbuscular mycorrhizal fungi under soil zinc deficiency and toxicity: linking plant physiology and gene expression. Plant Soil 420:375–388. https://doi.org/10.1007/s11104-017-3409-4

    CAS  Article  Google Scholar 

  70. Watts-Williams SJ, Cavagnaro TR, Tyerman SD (2019) Variable effects of arbuscular mycorrhizal fungal inoculation on physiological and molecular measures of root and stomatal conductance of diverse Medicago truncatula accessions. Plant. Cell Environ:285–294. https://doi.org/10.1111/pce.13369

    Google Scholar 

  71. White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    CAS  Google Scholar 

  72. WHO (1996) Trace-element bioavailability and interactions. World Health Organisation, Geneva

    Google Scholar 

  73. Wise A (1995) Phytate and zinc bioavailability. Int J Food Sci Nutr 46:53–63

    CAS  PubMed  Google Scholar 

  74. Wood RJ, Zheng JJ (1997) High dietary calcium intakes reduce zinc absorption and balance in humans. Am J Clin Nutr 65:1803–1809

    CAS  PubMed  Google Scholar 

  75. Yu Y, Luo L, Yang K, Zhang S (2011) Influence of mycorrhizal inoculation on the accumulation and speciation of selenium in maize growing in selenite and selenate spiked soils. Pedobiologia 54:267–272

    CAS  Google Scholar 

  76. Zhang W, Liu D, Liu Y, Cui Z, Chen X, Zou C (2016) Zinc uptake and accumulation in winter wheat relative to changes in root morphology and mycorrhizal colonization following varying phosphorus application on calcareous soil. Field Crops Res 197:74–82

    Google Scholar 

  77. Zhang S, Lehmann A, Zheng W, You Z, Rillig MC (2019) Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytol 222:543–555. https://doi.org/10.1111/nph.15570

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor Mike McLaughlin and Ms. Bogumila Tomczak for access to the ICP-AES, and Ms. Andrea Ramirez Sepulveda and Ms. Cuc Tran for technical assistance. We also thank the anonymous reviewers and the editor of this manuscript for valuable feedback.

Funding

BTTT acknowledges the Vied-Adelaide University joint scholarship. SJWW acknowledges the University of Adelaide Ramsay Fellowship and the Australian Research Council Centre of Excellence in Plant Energy Biology for support (Grant number CE140100008).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stephanie J. Watts-Williams.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 25.6 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tran, B.T.T., Cavagnaro, T.R. & Watts-Williams, S.J. Arbuscular mycorrhizal fungal inoculation and soil zinc fertilisation affect the productivity and the bioavailability of zinc and iron in durum wheat. Mycorrhiza 29, 445–457 (2019). https://doi.org/10.1007/s00572-019-00911-4

Download citation

Keywords

  • Rhizophagus irregularis
  • Biofortification
  • Plant nutrition
  • Micronutrient bioavailability
  • Phytic acid