Advertisement

Mycorrhiza

pp 1–22 | Cite as

Taxi drivers: the role of animals in transporting mycorrhizal fungi

  • Martina VašutováEmail author
  • Piotr Mleczko
  • Alvaro López-García
  • Irena Maček
  • Gergely Boros
  • Jan Ševčík
  • Saori Fujii
  • Davorka Hackenberger
  • Ivan H. Tuf
  • Elisabeth Hornung
  • Barna Páll-Gergely
  • Rasmus Kjøller
Review

Abstract

Dispersal of mycorrhizal fungi via animals and the importance for the interacting partners’ life history as well as for ecosystems is an understudied topic. In this review, we describe the available evidence and the most important knowledge gaps and finally suggest ways to gain the missing information. So far, 33 articles have been published proving a successful transfer of mycorrhizal propagules by animals. The vast majority of research on invertebrates was focused on arbuscular mycorrhizal (AM) fungi, whereas papers on vertebrates (mainly rodents and artiodactyls) equally addressed ectomycorrhizal (ECM) and AM fungi. Effective dispersal has been mostly shown by the successful inoculation of bait plants and less commonly by spore staining or germination tests. Based on the available data and general knowledge on animal lifestyles, collembolans and oribatid mites may be important in transporting ECM fungal propagules by ectozoochory, whereas earthworms, isopods, and millipedes could mainly transfer AM fungal spores in their gut systems. ECM fungal distribution may be affected by mycophagous dipterans and their hymenopteran parasitoids, while slugs, snails, and beetles could transport both mycorrhizal groups. Vertebrates feeding on fruit bodies were shown to disperse mainly ECM fungi, while AM fungi are transported mostly accidentally by herbivores. The important knowledge gaps include insufficient information on dispersal of fungal propagules other than spores, the role of invertebrates in the dispersal of mycorrhizal fungi, the way in which propagules pass through food webs, and the spatial distances reached by different dispersal mechanisms both horizontally and vertically.

Keywords

Arbuscular mycorrhiza Ectomycorrhiza Zoochory Dispersal Fungal traits Biodiversity 

Notes

Acknowledgments

First of all, we acknowledge the COST Action FP1305 Biolink (and its chair Martin Lukac, co-chair Johannes Rousk and Sietse van der Linde) because the idea to review this topic stemmed from our meetings in this network. Consultation from the members of the Laboratory of Social and Myrmecophilous Insects, Museum and Institute of Zoology, PAS (Warsaw, Poland) is highly acknowledged. We thank Keith Edwards for improving the English language of the manuscript. M.F. Allen and two anonymous reviewers gave valuable comments on the manuscript.

Funding information

M.V. was partly supported by the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (NPU I) (Grant No. LO1415) and partly by the Grant Agency of the Czech Republic (Grant No. 31-19-15031S); P.M. was supported by the Institute of Botany, Jagiellonian University (K/ZDS/007340, K/ZDS/007344); A.L.G. was partly supported by a European Union’s Horizon 2020 Marie Curie Individual Fellowship (Grant No. 708530 – DISPMIC) and partly by the Spanish government under the Plan Nacional de I+D+I (project CGL2015-69118-C2-2-P - COEXMED-II); I.M. was supported by the Slovenian Research Agency project J4-7052 and research core funding P4-008; I.H.T. was partly supported by a grant from the Czech Ministry of Agriculture (No. QJ1630422). R.K. was partly supported by the ‘Center for Bioenergy Recycling – ASHBACK’ funded by the Danish Council for Strategic Research (Grant No. 0606-00587B).

Supplementary material

572_2019_906_MOESM1_ESM.xlsx (305 kb)
ESM 1 (XLSX 304 kb)

References

  1. Allen MF (1987) Re-establishment of mycorrhizas on Mount St Helens: migration vectors. T Brit Mycol Soc 88:413–417CrossRefGoogle Scholar
  2. Allen MF, MacMahon JA (1988) Direct va mycorrhizal inoculation of colonizing plants by pocket gophers (Thomomys talpoides) on Mount St. Helens. Mycologia 80(2):754–756CrossRefGoogle Scholar
  3. Allen MF (1988) Re-establishment of mycorrhizae following severe disturbance: comparative patch dynamics of a shrub desert and a subalpine volcano. P Roy Soc Edinb B 94:63–71Google Scholar
  4. Allen MF, Allen EB, Dahm CN, Edwards FS (1993) Preservation of biological diversity in mycorrhizal fungi: importance and human impacts. In: Sundnes G (ed) International symposium on human impacts on self-recruiting populations. The Royal Norwegian Academy of Sciences, Trondheim, pp 81–108Google Scholar
  5. Allen MF, Klironomos JN, Harney S (1997) The epidemiology of mycorrhizal fungi during succession. In: Carroll G, Tudzynski P (eds), The Mycota vol VB. pp 169–183Google Scholar
  6. Ambarish CN, Sridhar KR (2014) Do the giant pill-millipedes (Arthrosphaera: Sphaerotheriida) disseminate arbuscular mycorrhizal spores in the Western Ghats? Symbiosis 64:91–95CrossRefGoogle Scholar
  7. Anslan S, Bahram M, Tedersoo L (2016) Temporal changes in fungal communities associated with guts and appendages of Collembola as based on culturing and high-throughput sequencing. Soil Biol Biochem 96:152–159CrossRefGoogle Scholar
  8. Ashkannejhad S, Horton TR (2006) Ectomycorrhizal ecology under primary succession on coastal sand dunes: interactions involving Pinus contorta, suilloid fungi and deer. New Phytol 169(2):345–354CrossRefPubMedGoogle Scholar
  9. Avis PG, Charvat I (2005) The response of ectomycorrhizal fungal inoculum to long-term increases in nitrogen supply. Mycologia 97(2):329–337CrossRefPubMedGoogle Scholar
  10. Barker GM, Efford MG (2004) Predatory gastropods as natural enemies of terrestrial gastropods and other invertebrates. Natural enemies of terrestrial molluscs. CABI Publishing, WallingfordGoogle Scholar
  11. Barth RH, Broshears RE (1982) The invertebrate world. Saunders College Publishing, PhiladelphiaGoogle Scholar
  12. Beever RE, Lebel T (2014) Truffles of New Zealand: a discussion of bird dispersal characteristics of fruit bodies. Auck Bot Soc 69(2):170–178Google Scholar
  13. Bengtsson G, Hedlund K, Rundgren S (1994) Food- and density-dependent dispersal: evidence from a soil collembolan. J Anim Ecol 63:513–520CrossRefGoogle Scholar
  14. Boch S, Prati D, Werth S, Rüetschi J, Fischer M (2011) Lichen endozoochory by snails. PLoS One 6(4):e18770.  https://doi.org/10.1371/journal.pone.0018770 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bonfante-Fasolo P, Vian B (1984) Wall texture in the spore of a vesicular-arbuscular mycorrhizal fungus. Protoplasma 120(1–2):51–60CrossRefGoogle Scholar
  16. Bougher NL, Courtenay J, Danks A, Tommerup IC (1998) Fungi as a key component of Australia’s most critically endangered mammal: Gilbert’s potoroos (Potorous gilbertii). In: Ahonen-Honnarth U, Danell E, Fransson P, Kåren O, Lindahl B, Rangel I, Finlay R (eds) 2nd international conference on mycorrhiza. Abstracts. University of Agricultural Sciences, Uppsala, p 32Google Scholar
  17. Brereton JLG (1957) The distribution of woodland isopods. Oikos 8:85–106CrossRefGoogle Scholar
  18. Brown GG (1995) How do earthworms affect microfloral and faunal community diversity? Plant Soil 170:209–231CrossRefGoogle Scholar
  19. Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agricultural Research, CanberraGoogle Scholar
  20. Buller AHR (1909) Researches on fungi. Longmans, LondonCrossRefGoogle Scholar
  21. Buller AHR (1922) Slugs as mycophagists. T Brit Mycol Soc 7(4):270–283CrossRefGoogle Scholar
  22. Bunyard BA (2018) Deadly Amanita mushrooms as food: a survey of the feeding preferences of mycophagous Diptera from across North America, with notes on evolved detoxication. Fungi 10(4):40–48Google Scholar
  23. Burges A (1950) The downward movement of fungal spores in sandy soil. T Brit Mycol Soc 33(1–2):142–147CrossRefGoogle Scholar
  24. Calhim S, Halme P, Petersen JH, Læssøe T, Bässler C, Heilmann-Clausen J (2018) Fungal spore diversity reflects substrate-specific deposition challenges. Sci Rep-UK 8(1):5356.  https://doi.org/10.1038/s41598-018-23292-8 CrossRefGoogle Scholar
  25. Cameron EK, Zabrodski MW, Karst J, Bayne EM (2012) Non-native earthworm influences on ectomycorrhizal colonization and growth of white spruce. Ecoscience 19(1):29–37CrossRefGoogle Scholar
  26. Capinera JL (2017) Biology and food habits of the invasive snail Allopeas gracile (Gastropoda: Subulinidae). Fla Entomol 100(1):116–123CrossRefGoogle Scholar
  27. Castillo-Guevara C, Sierra J, Galindo-Flores G, Cuautle M, Lara C (2011) Gut passage of epigeous ectomycorrhizal fungi by two opportunistic mycophagous rodents. Curr Zool 57:283–299CrossRefGoogle Scholar
  28. Chagnon PL, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491CrossRefPubMedGoogle Scholar
  29. Chandler PJ (2010) Associations with fungi and Mycetozoa. In: Chandler P (ed) A Dipterist’s handbook, 2nd ed. The Amateur Entomologist 15:417–441Google Scholar
  30. Claridge A, Trappe J (2005) Sporocarp mycophagy: nutritional, behavioral, evolutionary and physiological aspects. In: Dighton J, White J, Oudemans P (eds) The fungal community—its organization and role in the ecosystem, 3rd edn. CRC, Boca Raton, pp 599–611CrossRefGoogle Scholar
  31. Claridge AW (2002) Ecological role of hypogeous ectomycorrhizal fungi in Australian forests and woodlands. Plant Soil 244:291–305CrossRefGoogle Scholar
  32. Claridge AW, Tanton MT, Seebeck JH, Cork SJ, Cunningham RB (1992) Establishment of ectomycorrhizae on the roots of two species of Eucalyptus from fungal spores contained in the faeces of the long-nosed potoroo (Potorous tridactylus). Aust J Ecol 17:207–217CrossRefGoogle Scholar
  33. Claridge AW, Trappe JM, Claridge DL (2001) Mycophagy by the swamp wallaby (Wallabia bicolor). Wildl Res 28:643–645CrossRefGoogle Scholar
  34. Coleman DC, Crossley DA Jr, Hendrix PF (2004) Fundamentals of soil ecology. Elsevier Academic Press, BurlingtonGoogle Scholar
  35. Colgan W, Claridge AW (2002) Mycorrhizal effectiveness of Rhizopogon spores recovered from faecal pellets of small forest-dwelling mammals. Mycol Res 106(3):314–320CrossRefGoogle Scholar
  36. Comport SS, Hume ID (1998) Gut morphology and rate of passage of fungal spores through the gut of a tropical rodent, the giant white-tailed rat (Uromys caudimaculatus). Aust J Zool 46:461–471CrossRefGoogle Scholar
  37. Cooper T, Vernes K (2011) Mycophagy in the larger bodied skinks of the genera Tiliqua and Egernia: are there implications for ecosystem health? Zoologist 35(3):681–685CrossRefGoogle Scholar
  38. Correia M, Heleno R, da Silva LP, Costa JM, Rodríguez-Echeverría S (2018) First evidence for the joint dispersal of mycorrhizal fungi and plant diaspores by birds. New Phytol 222:1054–1060.  https://doi.org/10.1111/nph.15571 CrossRefGoogle Scholar
  39. Cork SJ, Kenagy GJ (1989) Rates of gut passage and retention of hypogeous fungal spores in two forest-dwelling rodents. J Mammal 70(3):512–519CrossRefGoogle Scholar
  40. D’Auria M, Racioppi R, Rana GL, Laurita A (2014) Studies on volatile organic compounds of some truffles and false truffles. Nat Prod Res 28:1709–1717CrossRefPubMedGoogle Scholar
  41. Danks MA (2012) Gut-retention time in mycophagous mammals: a review and a study of truffle-like fungal spore retention in the swamp wallaby. Fungal Ecol 5(2):200–210CrossRefGoogle Scholar
  42. den Boer PJ (1961) The ecological significance of activity patterns in the woodlouse Porcellio scaber. Archives Neerlandaises de Zoologie 14:283–409CrossRefGoogle Scholar
  43. Ditengou FA, Muller A, Rosenkranz M, Felten J, Lasok H, Miloradovic van Doorn M, Legue’ V, Palme K, Schnitzler JP, Polle A (2015) Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nature Comm 6:6279.  https://doi.org/10.1038/ncomms7279 CrossRefGoogle Scholar
  44. Douhan GW, Vincenot L, Gryta H, Selosse MA (2011) Population genetics of ectomycorrhizal fungi: from current knowledge to emerging directions. Fungal Biol 115(7):569–597CrossRefPubMedGoogle Scholar
  45. Dózsa-Farkas K (1992) Über die vertikale Verbreitung der Enchytraeiden (Oligochaeta: Enchytraeidae) in einem Hainbuchen-Eichenwald Ungarns. Opusc Zool Budapest 25:61–74Google Scholar
  46. Dubay SA, Hayward GD, Martínez del Rio C (2008) Nutritional value and diet preference of arboreal lichens and hypogeous fungi for small mammals in the Rocky Mountains. Can J Zool 86:851–862CrossRefGoogle Scholar
  47. Egan C, Li D-W, Klironomos JN (2014) Detection of arbuscular mycorrhizal fungal spores in the air across different biomes and ecoregions. Fungal Ecol 12:26–31CrossRefGoogle Scholar
  48. Ekelund F, Rønn R (1994) Notes on protozoa in agricultural soil with emphasis on heterotrophic flagellates and naked amoebae and their ecology. FEMS Microbiol Rev 15(4):321–353CrossRefPubMedGoogle Scholar
  49. Elliott WT (1922) Some observations on the mycophagous propensities of slugs. Trans Brit Mycol Soc 8(1–2):84–90CrossRefGoogle Scholar
  50. Epps MJ, Penick CA (2018) Facultative mushroom feeding by common woodland ants (Formicidae, Aphaenogaster spp.). Food Webs 14:9–13CrossRefGoogle Scholar
  51. Fogel R, Trappe JM (1978) Fungus consumption (mycophagy) by small animals. Northwest Sci 52:1–31Google Scholar
  52. Fogel R, Peck BS (1975) Ecological studies of hypogeous fungi. I. Coleoptera associated with sporocarps. Mycologia 67:741–747CrossRefPubMedGoogle Scholar
  53. Fracchia S, Krapovickas L, Valentinuzzi VS (2011) Dispersal of arbuscular mycorrhizal fungi and dark septate endophytes by Ctenomys cf. knighti (Rodentia) in the northern Monte Desert of Argentina. J Arid Environ 75(11):1016–1023CrossRefGoogle Scholar
  54. Fries N (1984) Spore germination in the higher basidiomycetes. Proceedings: Plant Sciences 93(3):205Google Scholar
  55. Friese CF, Allen MF (1991) Tracking the fates of exotic and local VA mycorrhizal fungi: methods and patterns. Agric Ecosyst Environ 34:87–96CrossRefGoogle Scholar
  56. Frouz J, Ali A, Frouzova J, Lobinske RJ (2004) Horizontal and vertical distribution of soil macroarthropods along a spatio-temporal moisture gradient in subtropical Central Florida. Environ Entomol 33(5):1282–1295CrossRefGoogle Scholar
  57. Gain WA (1891) Notes on the food of some of the British mollusks. J Conchol 6(1):349–352Google Scholar
  58. Galante TE, Horton T, Swaney D (2011) 95% of basidiospores fall within 1 m of the cap: a field- and modeling-based study. Mycologia 103(6):1175–1183CrossRefPubMedGoogle Scholar
  59. Gange A (2000) Arbuscular mycorrhizal fungi, Collembola and plant growth. Trends Ecol Evol 15:369–372CrossRefPubMedGoogle Scholar
  60. Gardner MR (1974) Revision of the millipede family Andrognathidae in the Nearctic region. Mem Pac Coast Entomol Soc 5:1–61Google Scholar
  61. Geisen S, Mitchell EA, Adl S, Bonkowski M, Dunthorn M, Ekelund F, Fernández LD, Jousset A, Krashevska JV, Singer D, Spiegel FW, Walochnik J, Lara E (2018) Soil protists: a fertile frontier in soil biology research. FEMS Microbiol Rev 42(3):293–323CrossRefPubMedGoogle Scholar
  62. Giannakis N, Sanders FE (1989) Interactions between mycophagous nematodes, mycorrhizal and other soil fungi. Agric Ecosyst Environ 29(1–4):163–167Google Scholar
  63. Glassman SI, Levine CR, DiRocco AM, Battles JJ, Bruns TD (2016) Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot. ISME J 10:1228–1239CrossRefPubMedGoogle Scholar
  64. Glen DM, Milsom NF, Wiltshire CW (1990) Effect of seed depth on slug damage to winter wheat. Ann App Biol 117:693–701CrossRefGoogle Scholar
  65. Gormsen D, Olsson PA, Hedlund K (2004) The influence of collembolans and earthworms on AM fungal mycelium. Appl Soil Ecol 27(3):211–220CrossRefGoogle Scholar
  66. Green K, Tory MK, Mitchell AT, Tennant P, May TW (1999) The diet of the long-footed potoroos (Potorous longipes). Aust Ecol 24:151–156CrossRefGoogle Scholar
  67. Halbwachs H, Bässler C (2015) Gone with the wind—a review on basidiospores of lamellate agarics. Mycosphere 6(1):78–112CrossRefGoogle Scholar
  68. Halbwachs H, Brandl R, Bässler C (2015) Spore wall traits of ectomycorrhizal and saprotrophic agarics may mirror their distinct lifestyles. Fungal Ecol 17:197–204CrossRefGoogle Scholar
  69. Hallet JG, O’Connell MA, Maguire CC (2003) Ecological relationships of terrestrial small mammals in western coniferous forests. In: Zabel CJ, Anthony RG (eds) Mammal community dynamics. Cambridge University Press, Cambridge, pp 120–156CrossRefGoogle Scholar
  70. Hämäläinen A, Broadley K, Droghini A, Haines JA, Lamb CT, Boutin S, Gilbert S (2017) The ecological significance of secondary seed dispersal by carnivores. Ecosphere 8(2).  https://doi.org/10.1002/ecs2.1685
  71. Harinikumar KM, Bagyaraj DJ (1994) Potential of earthworms, ants, millipedes, and termites for dissemination of vesicular-arbuscular mycorrhizal fungi in soil. Biol Fert Soil 18(2):115–118CrossRefGoogle Scholar
  72. Harinikumar KM, Bagyaraj DJ, Kale RD (1994) Vesicular arbuscular mycorrhizal propagules in earthworm cast. In: Veeresh GK, Rajagopal D, Viraktamath CV (eds) Advances in management and conservation of soil fauna. South Asia Books, pp 605–610Google Scholar
  73. Hassall M, Turner JG, Rands MRW (1987) Effects of terrestrial isopods on the decomposition of woodland leaf litter. Oecologia 72(4):597–604CrossRefPubMedGoogle Scholar
  74. Hedlund K, Augustsson A (1995) Effects of Enchytraeid grazing on fungal growth and respiration. Soil Biol Biochem 27:905–909CrossRefGoogle Scholar
  75. Hopkin SP (1997) Biology of the springtails. Oxford University Press, OxfordGoogle Scholar
  76. Hornung E (1981) Investigation on the productivity of the macrodecomposer isopod, Trachelipus nodulosus C.L.Koch. Acta Biologica Szegediensis 27(1–4):203–208Google Scholar
  77. Horton TR (2017) Spore dispersal in ectomycorrhizal fungi at fine and regional scales. In: Tedersoo L (ed) Biogeography of mycorrhizal symbiosis. Springer, Cham, pp 61–78CrossRefGoogle Scholar
  78. Houston TF, Bougher NL (2010) Records of hypogeous mycorrhizal fungi in the diet of some Western Australian bolboceratine beetles (Coleoptera: Geotrupidae, Bolboceratinae). Aust J Entomol 49(1):49–55CrossRefGoogle Scholar
  79. Ingold CT (1953) Dispersal in fungi. Clarendon, LondonCrossRefGoogle Scholar
  80. Ingold CT (1973) The gift of a truffle. Bull Br Mycol Soc 7:32–33CrossRefGoogle Scholar
  81. Jacobsen RM, Kauserud H, Sverdrup-Thygeson A, Bjorbækmo MM, Birkemoe T (2017) Wood-inhabiting insects can function as targeted vectors for decomposer fungi. Fungal Ecol 29:76–84CrossRefGoogle Scholar
  82. Jakovlev J (2012) Fungal hosts of mycetophilids (Diptera: Sciaroidea excluding Sciaridae): a review. Mycology 3:11–23Google Scholar
  83. Jakovlev J (1994) Palearctic Diptera associated with fungi and myxomycetes. Karelian Research Center, Russian Academy of Sciences, Forest Research Institute, Petrozavodsk [In Russian with English summary]Google Scholar
  84. Janos DP, Sahley CT, Emmons LH (1995) Rodent dispersal of vesicular-arbuscular mycorrhizal fungi in Amazonian Peru. Ecology 76:1852–1858CrossRefGoogle Scholar
  85. Johnson CN (1994) Mycophagy and spore dispersal by a rat-kangaroo: consumption of ectomycorrhizal taxa in relation to their abundance. Funct Ecol 8:464–468CrossRefGoogle Scholar
  86. Judd WW (1957) A collection of insects and millipeds from fungi in Ontario. T Am Microsc Soc 76:311–316CrossRefGoogle Scholar
  87. Kempken F, Rohlfs M (2010) Fungal secondary metabolite biosynthesis—a chemical defence strategy against antagonistic animals? Fungal Ecol 3(3):107–114CrossRefGoogle Scholar
  88. Kitabayashi K, Tuno N, Hosaka K, Yaguchi Y (2016) Natures of ingested basidio-spores in dipteran larvae inhabiting sporophores of Agaricomycetidae. Jpn J Mycol 57:69–76Google Scholar
  89. Kjøller R, Olsrud M, Michelsen A (2010) Co-existing ericaceous plant species in a subarctic mire community share fungal root endophytes. Fungal Ecol 3(3):205–214CrossRefGoogle Scholar
  90. Klironomos JN, Hart MM (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12(4):181–184CrossRefPubMedGoogle Scholar
  91. Klironomos JN, Moutoglis P (1999) Colonization of nonmycorrhizal plants by mycorrhizal neighbours as influenced by the collembolan, Folsomia candida. Biol Fert Soil 29(3):277–281CrossRefGoogle Scholar
  92. Klironomos JN, Bednarczuk EM, Neville J (1999) Reproductive significance of feeding on saprobic and arbuscular mycorrhizal fungi by the collembolan, Folsomia candida. Funct Ecol 13(6):756–761CrossRefGoogle Scholar
  93. Kobayashi M, Kitabayashi K, Tuno N (2017) Spore dissemination by mycophagous adult drosophilids. Ecol Res 32(4):621–626CrossRefGoogle Scholar
  94. Koskinen J, Roslin T, Nyman T, Abrego N, Michell C, Vesterinen EJ (2019) Finding flies in the mushroom soup: host specificity of fungus-associated communities revisited with a novel molecular method. Mol Ecol 28:190–202.  https://doi.org/10.1111/mec.14810
  95. Kotter MM, Farentinos RC (1984) Formation of ponderosa pine Ectomycorrhizae after inoculation with feces of tassel-eared squirrels. Mycologia 76(4):758–760CrossRefGoogle Scholar
  96. Krab EJ, Oorsprong H, Berg MP, Cornelissen JH (2010) Turning northern peatlands upside down: disentangling microclimate and substrate quality effects on vertical distribution of Collembola. Funct Ecol 24(6):1362–1369CrossRefGoogle Scholar
  97. Kües U, Khonsuntia W, Subba S, Dörnte B (2018) Volatiles in communication of Agaricomycetes. In: Anke T, Schüffler A (eds) Physiology and genetics. Springer, Cham, pp 149–212CrossRefGoogle Scholar
  98. Lamont BB, Ralph CS, Christensen PES (1985) Mycophagous marsupials as dispersal agents for ectomycorrhizal fungi on eucalyptus Calophylla and Gastrolobium bilobum. New Phytol 101(4):651–656CrossRefGoogle Scholar
  99. Lehmitz R, Russell D, Hohberg K, Christian A, Xylander WE (2012) Active dispersal of oribatid mites into young soils. App Soil Ecol 55:10–19CrossRefGoogle Scholar
  100. Lekberg Y, Waller LP (2016) What drives differences in arbuscular mycorrhizal fungal communities among plant species? Fungal Ecol 24:135–138CrossRefGoogle Scholar
  101. Lekberg Y, Meadow J, Rohr JR, Redecker D, Zabinski CA (2011) Importance of dispersal and thermal environment for mycorrhizal communities: lessons from Yellowstone National Park. Ecology 92(6):1292–1302CrossRefPubMedGoogle Scholar
  102. Lilleskov EA, Bruns TD (2005) Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs. Mycologia 97(4):762–769CrossRefPubMedGoogle Scholar
  103. Livne-Luzon S, Avidan Y, Weber G, Migael H, Bruns T, Ovadia O, Shemesh H (2017) Wild boars as spore dispersal agents of ectomycorrhizal fungi: consequences for community composition at different habitat types. Mycorrhiza 27(3):165–174CrossRefPubMedGoogle Scholar
  104. López-García Á, Azcón-Aguilar C, Barea JM (2014) The interactions between plant life form and fungal traits of arbuscular mycorrhizal fungi determine the symbiotic community. Oecologia 176:1075–1086CrossRefPubMedGoogle Scholar
  105. Luoma DL, Trappe JM, Claridge AW, Jacobs KM, Cazares E (2003) Relationships among fungi and small mammals in forested ecosystems. In: Zable CJ, Anthony RG (eds) Mammal community dynamics: management and conservation in the coniferous forests of western North America. Cambridge University Press, Cambridge, pp 343–373CrossRefGoogle Scholar
  106. Maaß S, Caruso T, Rillig MC (2015) Functional role of microarthropods in soil aggregation. Pedobiologia 58(2–3):59–63CrossRefGoogle Scholar
  107. Malmström A, Persson T (2011) Responses of Collembola and Protura to tree girdling—some support for ectomycorrhizal feeding. Soil Org 83:279–285Google Scholar
  108. Mangan SA, Adler GH (2002) Seasonal dispersal of arbuscular mycorrhizal fungi by spiny rats in a neotropical forest. Oecologia 131(4):587–597CrossRefPubMedGoogle Scholar
  109. Maraun M, Migge S, Schaefer M, Scheu S (1998) Selection of microfungal food by six oribatid mite species (Oribatida, Acari) from two different beech forests. Pedobiologia 42(3):232–240Google Scholar
  110. Maser C, Claridge AW, Trappe JM (2008) Trees, truffle, and beasts: how forests function. Rutgers University Press, New BrunswickGoogle Scholar
  111. Maser C, Trappe JM, Nussbaum RA (1978) Fungal-small mammal interrelationships with emphasis on Oregon coniferous forests. Ecology 59:799–809CrossRefGoogle Scholar
  112. Maunder JE, Voitk AJ (2010) What we don’t know about slugs and mushrooms. Fungi 3(3):36–44Google Scholar
  113. McGee PA, Baczocha N (1994) Sporocarpic Endogonales and Glomales in the scats of Rattus and Perameles. Mycol Res 98(2):246–249CrossRefGoogle Scholar
  114. McGraw R, Duncan N, Cazares E (2002) Fungi and other items consumed by the blue-gray taildropper slug (Prophysaon coeruleum) and the papillose taildropper slug (Prophysaon dubium). The Veliger 45(3):261–264Google Scholar
  115. McIlveen WD, Cole H Jr (1976) Spore dispersal of Endoganaceae by worms, ants, wasps, and birds. Can J Botany 54:1486–1489CrossRefGoogle Scholar
  116. Medway DG (2000) Mycophagy by North Island robin. Australas Mycol 19:102Google Scholar
  117. Menta C, Pinto S (2016) Biodiversity and ecology of soil fauna in relation to truffle. In: Zambonelli A, Iotti M, Murat C (eds) True truffle (Tuber spp.) in the World. Springer, Cham, pp 319–331Google Scholar
  118. Miller HA, Halls LK (1969) Fleshy fungi commonly eaten by Southern wildlife. USDA Forest Service Res Paper SO-49Google Scholar
  119. Molina R, Horton TR (2015) Mycorrhiza specificity: its role in the development and function of common mycelial networks. In: Horton TR (ed) Mycorrhizal networks. Springer, Dordrecht, pp 1–39Google Scholar
  120. Molina R, Horton TR, Trappe JM, Marcot BG (2011) Addressing uncertainty: how to conserve and manage rare or little-known fungi. Fungal Ecol 4(2):134–146CrossRefGoogle Scholar
  121. Montecchio L, Scattolin L, Squartini A, Butt KR (2015) Potential spread of forest soil-borne fungi through earthworm consumption and casting. iForest 8:295–301CrossRefGoogle Scholar
  122. Morton JB, Bentivenga SP, Bever JD (1995) Discovery, measurement, and interpretation of diversity in arbuscular endomycorrhizal fungi (Glomales, Zygomycetes). Can J Bot 73:25–32CrossRefGoogle Scholar
  123. Müller A, Faubert P, Hagen M, Zu Castell W, Polle A, Schnitzler JP, Rosenkranz M (2013) Volatile profiles of fungi-chemotyping of species and ecological functions. Fungal Genet Biol 54:25–33CrossRefPubMedGoogle Scholar
  124. Nakamori T, Suzuki A (2005) Spore-breaking capabilities of collembolans and their feeding habitat within sporocarps. Pedobiologia 49(3):261–267CrossRefGoogle Scholar
  125. Nakamori T, Suzuki A (2007) Defensive role of cystidia against Collembola in the basidiomycetes Russula bella and Strobilurus ohshimae. Mycol Res 111(11):1345–1351CrossRefPubMedGoogle Scholar
  126. Nakamori T, Suzuki A (2010) Spore resistance and gut-passage time of macrofungi consumed by Ceratophysella denisana (Collembola: Hypogastruridae). Fungal Ecol 3(1):38–42CrossRefGoogle Scholar
  127. Nakamori T, Suzuki A (2012) Occurrence and gut contents of flatworms on fungal sporocarps. J Nat Hist 46(45–46):2763–2767CrossRefGoogle Scholar
  128. Nakano M, Ochiai A, Kamata K, Nakamori T (2017) The preference of Morulina alata (Collembola: Neanuridae) feeding on some fungal sporocarps and the effects of passage through the gut on spores. Eur J Soil Biol 81:116–119CrossRefGoogle Scholar
  129. Nara K (2008) Spores of ectomycorrhizal fungi: ecological strategies for germination and dormancy. New Phytol 181:245–248CrossRefGoogle Scholar
  130. Neutel AM, Heesterbeek JAP, de Ruiter PC (2002) Stability in real food webs: weak links in long loops. Science 296:1120–1123CrossRefPubMedGoogle Scholar
  131. Nielsen KB, Kjøller R, Bruun HH, Schnoor TK, Rosendahl S (2016) Colonization of new land by arbuscular mycorrhizal fungi. Fungal Ecol 20:22–29CrossRefGoogle Scholar
  132. Nguyen NH (2018) Longevity of light- and dark-colored basidiospores from saprotrophic mushroom-forming fungi. Mycologia 110(1):131–135PubMedGoogle Scholar
  133. Nuñez MA, Hayward J, Horton TR, Amico GC, Dimarco RD, Barrios-Garcia MN, Simberloff D (2013) Exotic mammals disperse exotic fungi that promote invasion by exotic trees. PLoS One 8(6):e66832.  https://doi.org/10.1371/journal.pone.0066832 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Nuske SJ, Vernes K, May TW, Claridge AW, Congdon BC, Krockenberger A, Abell SE (2017) Redundancy among mammalian fungal dispersers and the importance of declining specialists. Fungal Ecol 27:1–13CrossRefGoogle Scholar
  135. Nuske SJ, Anslan S, Tedersoo L, Bonner MT, Congdon BC, Abell SE (2018) The endangered northern bettong, Bettongia tropica, performs a unique and potentially irreplaceable dispersal function for ectomycorrhizal truffle fungi. Mol Ecol 27(23):4960–4971CrossRefPubMedGoogle Scholar
  136. Nuske SJ, Anslan S, Tedersoo L, Congdon BC, Abell SE (2019) Ectomycorrhizal fungal communities are dominated by mammalian dispersed truffle-like taxa in north-east Australian woodlands. Mycorrhiza 29:181–183CrossRefPubMedGoogle Scholar
  137. Oehl F, da Silva GA, Goto BT, Sieverding E (2011) Glomeromycota: three new genera and glomoid species reorganized. Mycotaxon 116:75–120CrossRefGoogle Scholar
  138. Ohsowski BM, Zaitsoff PD, Öpik M, Hart MM (2014) Where the wild things are: looking for uncultured Glomeromycota. New Phytol 204(1):171–179CrossRefPubMedGoogle Scholar
  139. Öpik M, Davison J, Moora M, Zobel M (2014) DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany 92:135–147CrossRefGoogle Scholar
  140. Ori F, Trappe J, Leonardi M, Iotti M, Pacioni G (2018) Crested porcupines (Hystrix cristata): mycophagist spore dispersers of the ectomycorrhizal Tuber aestivum. Mycorrhiza 28:561–565CrossRefPubMedGoogle Scholar
  141. Pacioni G, Bologna MA, Laurenzi M (1991) Insect attraction by Tuber: a chemical explication. Mycol Res 95:1359–1363CrossRefGoogle Scholar
  142. Pálková R (2013) Space activity and sheltering behaviour of terrestrial isopods. Master thesis, Palacky University OlomoucGoogle Scholar
  143. Pattinson GS, Smith SE, Doube BM (1997) Earthworm Aporrectodea trapezoides had no effect on the dispersal of a vesicular-arbuscular mycorrhizal fungi, Glomus intraradices. Soil Biol Biochem 29(7):1079–1088CrossRefGoogle Scholar
  144. Paugy M, Baillon F, Chevalier D, Duponnois R (2004) Elephants as dispersal agents of mycorrhizal spores in Burkina Faso. Afr J Ecol 21:123–128Google Scholar
  145. Piattoni F, Amicucci A, Iotti M, Ori F, Stocchi V, Zambonelli A (2014) Viability and morphology of Tuber aestivum spores after passage through the gut of Sus scrofa. Fungal Ecol 9(1):52–60CrossRefGoogle Scholar
  146. Põldmaa K, Kaasik A, Tammaru T, Kurina O, Jürgenstein S, Teder T (2016) Polyphagy on unpredictable resources does not exclude host specialization: insects feeding on mushrooms. Ecology 97:2824–2833CrossRefPubMedGoogle Scholar
  147. Ponder F Jr. (1980) Rabbits and grasshoppers: vectors of endomycorrhizal fungi on new coal mine spoil. USDA Forest Service Res Note NC-250, St. Paul, MNGoogle Scholar
  148. Ponge JF (1991) Food resources and diets of soil animals in a small area of Scots pine litter. Geoderma 49(1–2):33–62CrossRefGoogle Scholar
  149. Rabatin SC, Stinner BR (1985) Arthropods as consumers of vesicular-arbuscular mycorrhizal fungi. Mycologia 77(2):320–322CrossRefGoogle Scholar
  150. Rabatin SC, Stinner BR (1988) Indirect effects of interactions between VAM fungi and soil-inhabiting invertebrates on plant processes. Agric Ecosyst Environ 24(1–3):135–146CrossRefGoogle Scholar
  151. Rabatin SC, Stinner BR (1989) The significance of vesicular-arbuscular mycorrhizal fungal-soil interactions in agroecosystems. Agric Ecosyst Environ 27:195–204CrossRefGoogle Scholar
  152. Redecker D, Raab P, Oehl F, Camacho FJ, Courtecuisse R (2007) A novel clade of sporocarp-forming species of glomeromycotan fungi in the Diversisporales lineage. Mycol Prog 6:35–44CrossRefGoogle Scholar
  153. Reddell P, Spain AV, Hopkins M (1997) Dispersal of spores of mycorrhizal fungi in scats of native mammals in tropical forests of northeastern Australia. Biotropica 29(2):184–192CrossRefGoogle Scholar
  154. Reddell P, Spain AV (1991) Earthworms as vectors of viable propagules of mycorrhizal fungi. Soil Biol Biochem 23(8):767–774CrossRefGoogle Scholar
  155. Rémy P (1950) Les Millotauropus, types d’un nouveau groupe de Pauropodes. Cr Hebd Acad Sc 230:472–473Google Scholar
  156. Rendoš M, Mock A, Miklisová D (2016) Terrestrial isopods and myriapods in a forested scree slope: subterranean biodiversity, depth gradient and annual dynamics. J Nat Hist 50(33–34):2129–2142CrossRefGoogle Scholar
  157. Renker C, Otto P, Schneider K, Zimdars B, Maraun M, Buscot F (2005) Oribatid mites as potential vectors for soil microfungi: study of mite-associated fungal species. Microb Ecol 50(4):518–528CrossRefPubMedGoogle Scholar
  158. Riffle JW (1975) Two Aphelenchoides species suppress formation of Suillus granulatus ectomycorrhizae with Pinus ponderosa seedlings. Plant Dis Rep 59:951–955Google Scholar
  159. Rockefeller A (2012) Observation 93252: Corticiaceae sensu lato. Mushroom Observer. https://mushroomobserver.org/93252. Accessed 10 October 2018
  160. Roháček J, Ševčík J (2013) Diptera associated with sporocarps of Meripilus giganteus in an urban habitat. Centr Eur J Biol 8:143–167Google Scholar
  161. Rothwell FM, Holt C (1978) Vesicular-arbuscular mycorrhizae established with Glomus fasciculatus spores isolated from the feces of cricetine mice. USDA Forest Service Res Note NE-259, Broomall, PAGoogle Scholar
  162. Ruddick SM, Williams ST (1972) Studies on the ecology of actinomycetes in soil V. Some factors influencing the dispersal and adsorption of spores in soil. Soil Biol Biochem 4(1):93–103CrossRefGoogle Scholar
  163. Rudy J, Rendoš M, Ľuptáčik P, Mock A (2018) Terrestrial isopods associated with shallow underground of forested scree slopes in the Western Carpathians (Slovakia). In: Hornung E, Taiti S, Szlavecz K (eds) Isopods in a changing world. ZooKeys 801:323–335Google Scholar
  164. Ruess L, Lussenhop J (2005) Trophic interactions of fungi and animals. In: Dighton J, White J, Oudemans P (eds) The fungal community—its organization and role in the ecosystem, 3rd edn. CRC, Boca Raton, pp 581–598CrossRefGoogle Scholar
  165. Sawahata T, Shimano S, Suzuki M (2008) Tricholoma matsutake 1-Ocen-3-ol and methyl cinnamate repel mycophagous Proisotoma minuta (Collembola: Insecta). Mycorrhiza 18(2):111–114CrossRefPubMedGoogle Scholar
  166. Shachak M (1980) Energy allocation and life history strategy of the desert isopod H. reaumuri. Oecologia 45(3):404–413CrossRefPubMedGoogle Scholar
  167. Schickmann S, Urban A, Kräutler K, Nopp-Mayr U, Hackländer K (2012) The interrelationship of mycophagous small mammals and ectomycorrhizal fungi in primeval, disturbed and managed central European mountainous forests. Oecologia 170(2):395–409CrossRefPubMedPubMedCentralGoogle Scholar
  168. Schigel DS (2009) Polypore assemblages in boreal old-growth forests, and associated Coleoptera (dissertation).Publications in Botany from the University of Helsinki 39:1–44Google Scholar
  169. Schneider K, Renker C, Maraun M (2005) Oribatid mite (Acari, Oribatida) feeding on ectomycorrhizal fungi. Mycorrhiza 16(1):67–72CrossRefPubMedGoogle Scholar
  170. Simpson J (1998) Why don’t more birds eat more fungi? Aust Mycol Newsl 17:67–68Google Scholar
  171. Simpson J (2000) More on mycophagous birds. Aust Mycol Newsl 19:49–51Google Scholar
  172. Smith ME, Henkel TW, Rollins JA (2015) How many fungi make sclerotia? Fungal Ecol 13:211–220CrossRefGoogle Scholar
  173. Soma K, Saito T (1983) Ecological studies of soil organisms with references to the decomposition of pine needles. Plant Soil 75(1):139–151CrossRefGoogle Scholar
  174. Starling JH (1944) Ecological studies of the Pauropoda of the Duke Forest. Ecol Monogr 14:291–310CrossRefGoogle Scholar
  175. Sturm H (1959) Die nahrung der Proturen. Naturwissenschaften 46(2):90–91CrossRefGoogle Scholar
  176. Sugiyama Y, Murata M, Kanetani S, Nara K (2019) Towards the conservation of ectomycorrhizal fungi on endangered trees: native fungal species on Pinus amamiana are rarely conserved in trees planted ex situ. Mycorrhiza 29:195–205.  https://doi.org/10.1007/s00572-019-00887-1 CrossRefPubMedGoogle Scholar
  177. Ševčík J (2003) Insects associated with wood–decaying fungi in the Czech and Slovak republics: a review of present knowledge. Acta Facultatis Rerum Naturalium Universitas Ostraviensis, Biologica–Ecologica 9:159–165Google Scholar
  178. Ševčík J (2010) Czech and Slovak Diptera associated with fungi. Slezské zemské muzeum, OpavaGoogle Scholar
  179. Tajovský K (1992) Feeding biology of the millipede Glomeris hexasticha (Glomeridae, Diplopoda). Berichte des naturwissenschaftlich-medizinischen Vereins in Innsbruck. Supplement 10:305–311Google Scholar
  180. Tedersoo L, Hansen K, Perry BA, Kjøller R (2006) Molecular and morphological diversity of pezizalean ectomycorrhiza. New Phytol 170(3):581–596CrossRefPubMedGoogle Scholar
  181. Telfer K, Brurberg M, Haukeland S, Stensvand A, Talgø V (2015) Phytophthora survives the digestive system of the invasive slug Arion vulgaris. Eur J Plant Pathol 142(1):125–132CrossRefGoogle Scholar
  182. Terwilliger J, Pastor J (1999) Small mammals, Ectomycorrhizae, and conifer succession in beaver meadows. Oikos 85(1):83–94CrossRefGoogle Scholar
  183. Taylor DL, Sinsabaugh RL (2015) The soil fungi. In: Paul EA (ed) Soil microbiology, ecology and biochemistry, 4th edn. Academic, LondonGoogle Scholar
  184. Trappe J, Claridge A (2005) Hypogeous fungi: evolution of reproductive and dispersal strategies through interactions with animals and mycorrhizal plants. In: Dighton J, White J, Oudemans P (eds) The fungal community—its organization and role in the ecosystem, 3rd edn. CRC, Boca Raton, pp 613–623Google Scholar
  185. Trappe JM, Molina R, Luorna DL, Cázares E, Pilz D, Smith JE, Castellano MA, Miller SL, Trappe MJ (2009) Diversity, ecology and conservation of truffle fungi in forests of Pacific Northwest. USDA Forest Service Gen Tech ep PNW-GTR-772, Portland, ORGoogle Scholar
  186. Trappe JM, Maser C (1976) Germination of spores of Glomus macrocarpus (Endogonaceae) after passage through a rodent digestive tract. Mycologia 68(2):433–436CrossRefGoogle Scholar
  187. Trappe JM, Maser C (1977) Ectomycorrhizal fungi: interactions of mushrooms with beasts and trees. In: Walters T (ed) Mushrooms and man: an interdisciplinary approach in mycology. Linn-Benton Community College, Albany, OR, pp 165–179Google Scholar
  188. Treonis A (2017) Belowground trophic interactions. In: Dighton J, White J (eds) The fungal community: its organization and role in the ecosystem, 4th edn. CRC, Boca Raton, pp 333–346Google Scholar
  189. Türke M, Lange M, Eisenhauer N (2018) Gut shuttle service: endozoochory of dispersal-limited soil fauna by gastropods. Oecologia 186(3):655–664CrossRefPubMedGoogle Scholar
  190. Urban A (2016) Truffles and small mammals. In: Zambonelli A, Iotti M, Murat C (eds) True truffle (tuber spp.) in the world. Springer, Cham, pp 353–373Google Scholar
  191. Urban A, Neuner-Plattner I, Krisai-Greilhuber I, Haselwandter K (2004) Molecular studies on terricolous microfungi reveal novel anamorphs of two Tuber species. Mycol Res 108:749–758CrossRefPubMedGoogle Scholar
  192. Varela-Cervero S, López-García Á, Barea JM, Azcón-Aguilar C (2016) Differences in the composition of arbuscular mycorrhizal fungal communities promoted by different propagule forms from a Mediterranean shrubland. Mycorrhiza 26:489–496CrossRefPubMedGoogle Scholar
  193. Vašutová M, Edwards-Jonášová M, Veselá P, Effenberková L, Fleischer P, Cudlín P (2018) Management regime is the most important factor influencing ectomycorrhizal species community in Norway spruce forests after windthrow. Mycorrhiza 28(3):221–233CrossRefPubMedGoogle Scholar
  194. Verner J, Gutiérrez RJ, Gould GI Jr. (1992) The California spotted owl: general biology and ecological relations. In: Verner J, McKelvey KS, Noon BR, Gutiérrez RJ, Gould GJ Jr., Beck TW (eds) The California spotted owl: a technical assessment of its current status. USDA Forest Service Gen Tech Rep PSW-GTR-133, pp 55–78Google Scholar
  195. Vernes K, Dunn L (2009) Mammal mycophagy and fungal spore dispersal across a steep environmental gradient in eastern Australia. Aust Ecol 34:69–76CrossRefGoogle Scholar
  196. Vernes K, Cooper T, Green S (2015) Seasonal fungal diets of small mammals in an Australian temperate forest ecosystem. Fungal Ecol 18:107–114CrossRefGoogle Scholar
  197. Vernes K, Poirier N (2007) Use of a robin’s nest as a cache site for truffles by a red squirrel. Northeast Nat 14:145–149CrossRefGoogle Scholar
  198. Voglino P (1895) Richerche intorno all'azione della lumacha e dei rospi nello sviluppo di Agaricini. Nuovo Gior Bot Italiano (Forli) 27:181–185Google Scholar
  199. Walther G, Garnica S, Weiß M (2005) The systematic relevance of conidiogenesis modes in the gilled Agaricales. Mycol Res 109(5):525–544CrossRefPubMedGoogle Scholar
  200. Warner GM, French DW (1970) Dissemination of fungi by migratory birds: survival and recovery of fungi from birds. Can J Botany 48(5):907–910CrossRefGoogle Scholar
  201. Warner NJ, Allen MF, MacMahon JA (1987) Dispersal agents of vesicular-arbuscular mycorrhizal fungi in a disturbed arid ecosystem. Mycologia 79(5):721–730CrossRefGoogle Scholar
  202. Welter-Schultes FW (2012) European non-marine molluscs, a guide for species identification. Planet Poster Editions, GöttingenGoogle Scholar
  203. Wijayawardene NN, Pawlowska J, Letcher PM, Kirk PM, Humber RA et al (2018) Notes for genera: basal clades of fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). Fungal Divers 92(1):43–129CrossRefGoogle Scholar
  204. Wolf FT, Wolf FA (1939) The snail Polygyra thyroidus as a mycophagist. B Torrey Bot Club 66(1):1–5CrossRefGoogle Scholar
  205. Wöllmer H, Kottke I (1990) Fine root studies in situ and in the laboratory. Environ Pollut 68:383–407CrossRefPubMedGoogle Scholar
  206. Wong VL (2017) Natural history of the social millipede Brachycybe lecontii (Wood, 1864). Thesis, the Virginia Polytechnic Institute and State UniversityGoogle Scholar
  207. Wood JR, Dickie IA, Moeller HV, Peltzer DA, Bonner KI, Rattray G, Wilmshurst JM (2015) Novel interactions between non-native mammals and fungi facilitate establishment of invasive pines. J Ecol 103(1):121–129CrossRefGoogle Scholar
  208. Yamashita S, Hijii N (2003) Effects of mushroom size on the structure of a mycophagous arthropod community: comparison between infracommunities with different types of resource utilization. Ecol Res 18(2):131–143CrossRefGoogle Scholar
  209. Zak B (1965) Aphids feeding on Douglas-fir. For Sci 11:410–411Google Scholar
  210. Zambonelli A, Ori F, Hall I (2017) Mycophagy and spore dispersal by vertebrates. In: Dighton J, White JF (eds) The fungal community: its organization and role in the ecosystem, 4th edn. CRC, Boca Raton, pp 347–358CrossRefGoogle Scholar
  211. Zielinski WJ, Duncan NP, Farmer EC, Truen RL, Clevenger AP, Barrett RH (1999) Diet of fishers (Martes pennati) at the southernmost extent of their range. J Mammal 80:961–971CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Martina Vašutová
    • 1
    • 2
    Email author
  • Piotr Mleczko
    • 3
  • Alvaro López-García
    • 4
    • 5
  • Irena Maček
    • 6
    • 7
  • Gergely Boros
    • 8
  • Jan Ševčík
    • 9
  • Saori Fujii
    • 10
  • Davorka Hackenberger
    • 11
  • Ivan H. Tuf
    • 12
  • Elisabeth Hornung
    • 13
  • Barna Páll-Gergely
    • 14
  • Rasmus Kjøller
    • 4
  1. 1.Global Change Research InstituteCzech Academy of SciencesČeské BudějoviceCzech Republic
  2. 2.Department of Botany, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Institute of Botany, Faculty of BiologyJagiellonian University in KrakówKrakówPoland
  4. 4.Department of BiologyUniversity of CopenhagenCopenhagenDenmark
  5. 5.Department of Soil Microbiology and Symbiotic SystemsEstación Experimental del Zaidín CSICGranadaSpain
  6. 6.Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  7. 7.Faculty of Mathematics, Natural Sciences and Information Technologies (FAMNIT)University of PrimorskaKoperSlovenia
  8. 8.Department of Zoology and Animal EcologySzent István UniversityGödöllöHungary
  9. 9.Department of Biology and Ecology, Faculty of ScienceUniversity of OstravaOstravaCzech Republic
  10. 10.Insect Ecology Laboratory, Department of Forest EntomologyForestry and Forest Products Research InstituteTsukubaJapan
  11. 11.Department of BiologyUniversity of OsijekOsijekCroatia
  12. 12.Department of Ecology and Environmental Sciences, Faculty of SciencePalacký University OlomoucOlomoucCzech Republic
  13. 13.Department of Ecology, Institute for BiologyUniversity of Veterinary Medicine BudapestBudapestHungary
  14. 14.Centre for Agricultural ResearchHungarian Academy of SciencesBudapestHungary

Personalised recommendations