Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants?

Abstract

Inoculation of arbuscular mycorrhizal fungi (AMF) as plant growth promoters has mostly been conducted using single-species inoculum. In this study, we investigated whether co-inoculation of different native AMF species induced an improvement of plant growth in an ultramafic soil. We analyzed the effects of six species of AMF from a New Caledonian ultramafic soil on plant growth and nutrition, using mono-inoculations and mixtures comprising different numbers of AMF species, in a greenhouse experiment. The endemic Metrosideros laurifolia was used as a host plant. Our results suggest that, when the plant faced multiple abiotic stress factors (nutrient deficiencies and high concentrations of different heavy metals), co-inoculation of AMF belonging to different families was more efficient than mono-inoculation in improving biomass, mineral nutrition, Ca/Mg ratio, and tolerance to heavy metals of plants in ultramafic soil. This performance suggested functional complementarity between distantly related AMF. Our findings will have important implications for restoration ecology and mycorrhizal biotechnology applied to ultramafic soils.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Amir H, Pineau R, Violette Z (1997) Premiers résultats sur les endomycorhizes des plantes de maquis miniers de Nouvelle-Calédonie. In: Jaffré T, Reeves RD, Becquer T (eds) The ecology of ultramafic and metalliferous areas. Edition ORSTOM. Documents Scientifiques et Techniques III2, Noumea, pp 79–85

    Google Scholar 

  2. Amir H, Jasper DA, Abbott LK (2008) Tolerance and induction of tolerance to Ni of arbuscular mycorrhizal fungi from New Caledonian ultramafic soils. Mycorrhiza 19:1–6. https://doi.org/10.1007/s00572-008-0197-y

    Article  CAS  PubMed  Google Scholar 

  3. Amir H, Ducousso M (2010) Les bactéries et les champignons du sol sur roches ultramafiques. In : L’Huillier L, Jaffré T, Wulff A (eds) Mines et environnement en Nouvelle-Calédonie : les milieux sur substrats ultramafiques et leur restauration, IAC Ed Nouméa, New Caledonia, pp 129–145

  4. Amir H, Lagrange A, Hassaïne N, Cavaloc Y (2013) Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza 23:585–595. https://doi.org/10.1007/s00572-013-0499-6

    Article  CAS  PubMed  Google Scholar 

  5. Amir H, Cavaloc Y, Laurent A, Pagand P, Gunkel P, Lemestre M, Médevielle V, Pain A, McCoy S (2019) Arbuscular mycorrhizal fungi and sewage sludge enhance growth and adaptation of Metrosideros laurifolia on ultramafic soil in New Caledonia: a field experiment. Sci Total Environ 651:334–343. https://doi.org/10.1016/j.scitotenv.2018.09.153

    Article  CAS  PubMed  Google Scholar 

  6. Augé RM, Toler HD, Saxton AM (2015) Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25:13–24. https://doi.org/10.1007/s00572-014-0585-

    Article  PubMed  Google Scholar 

  7. Baker AJM (1987) Metal tolerance. New Phytol 106:93–111

    Article  CAS  Google Scholar 

  8. Bárzana G, Aroca R, Paz JA, Chaumont F, Martinez-Ballesta MC, Carvajal M, Ruiz-Lozano JM (2012) Arbuscular mycorrhizal symbiosis increases relative apoplastic water flow in roots of the host plant under both well-watered and drought stress conditions. Ann Bot 109:1009–1017. https://doi.org/10.1093/aob/mcs007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bennett AE, Bever JD (2009) Trade-offs between arbuscular mycorrhizal fungal competitive ability and host growth promotion in Plantago lanceolata. Oecologia 160:807–816. https://doi.org/10.1007/s00442-009-1345-6

  10. Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.01559

  11. Błaszkowski J, Kozłowska A, Crossay T, Symanczik S, al-Yahya'ei MN (2017) A new family, Pervetustaceae with a new genus, Pervetustus, and P. simplex sp. nov. (Paraglomerales), and a new genus, Innospora with I. majewskii comb. nov. (Paraglomeraceae) in the Glomeromycotina. Nova Hedwigia 105:397–410. https://doi.org/10.1127/nova_hedwigia/2017/0419

    Article  Google Scholar 

  12. BŁaszkowski J, Renker C, Buscot F (2006) Glomus drummondii and G. walkeri, two new species of arbuscular mycorrhizal fungi (Glomeromycota). Mycol Res 110:555–566. https://doi.org/10.1016/j.mycres.2006.02.006

    Article  CAS  PubMed  Google Scholar 

  13. Briollais L, Durrieu G (2014) Application of quantile regression to recent genetic and -omic studies. Hum Genet 133:951–966. https://doi.org/10.1007/s00439-014-1440-6

    Article  PubMed  Google Scholar 

  14. Brooks RR (1987) The serpentine factor. In: Brooks RR (ed) Serpentine and its vegetation. A multidisciplinary approach. Dioscorides, Portland

    Google Scholar 

  15. Crossay T, Antheaume C, Redecker D, Bon L, Chedri N, Richert C, Guentas L, Cavaloc Y, Amir H (2017) New method for the identification of arbuscular mycorrhizal fungi by proteomic-based biotyping of spores using MALDI-TOF-MS. Sci Rep 7:14306. https://doi.org/10.1038/s41598-017-14487-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Crossay T, Cilia A, Cavaloc Y, Amir H, Redecker D (2018) Four new species of arbuscular mycorrhizal fungi (Glomeromycota) associated with endemic plants from ultramafic soils of New Caledonia. Mycol Progress 17:1–16. https://doi.org/10.1007/s11557-018-1386-5

    Article  Google Scholar 

  17. Crossay T (2018) Caractérisation taxonomique des champignons mycorhiziens à arbuscules natifs des sols ultramafiques de Nouvelle-Calédonie; analyse de leur synergie permettant l’adaptation des plantes à ces milieux extrêmes. PhD thesis. New Caledonia University, Nouméa

    Google Scholar 

  18. Daniels BA, Skipper HD (1982) Methods for the recovery and quantitative estimation of propagules from soil. In: Schenck NC (ed) Methods and principles of mycorrhizal research. The Amercian Phytopath Society, St Paul, Minnesota, U.S.A, pp 29–35

    Google Scholar 

  19. Durrieu G, Briollais L (2009) Sequential design for microarray experiments. J Am Stat Assoc 104:650–660. https://doi.org/10.1198/jasa.2009.0135

    Article  CAS  Google Scholar 

  20. Durrieu G, Briollais L (2017) Some recent statistical methods applied in genetics/genomics. In: Koenker R, Chernozhukov V, Xumin H, Limin P (eds) Handbooks of modern statistical methods. Chapman and Hall/CRC, New York, pp 409–427

    Google Scholar 

  21. Doubková P, Suda J, Sudová R (2011) Arbuscular mycorrhizal symbiosis on serpentine soils: the effect of native fungal communities on different Knautia arvensis ecotypes. Plant Soil 345:325–338. https://doi.org/10.1007/s11104-011-0785-z

    Article  CAS  Google Scholar 

  22. Doubková P, Vlasáková E, Sudová R (2013) Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil 370:149–161. https://doi.org/10.1007/s11104-013-1610-7

    Article  CAS  Google Scholar 

  23. Feddermann N, Finlay R, Boller T, Elfstrand M (2010) Functional diversity in arbuscular mycorrhiza – the role of gene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecol 3:1–8. https://doi.org/10.1016/j.funeco.2009.07.003

    Article  Google Scholar 

  24. Ferrol N, Tamayo E, Vargas P (2016) The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. J Exp Bot 67:6253–6265. https://doi.org/10.1093/jxb/erw403

    Article  CAS  PubMed  Google Scholar 

  25. Gordon AD (1999) Classification, 2nd edn. Chapman and Hall, Boca Raton

    Google Scholar 

  26. Gosling P, Jones J, Bending GD (2016) Evidence for functional redundancy in arbuscular mycorrhizal fungi and implications for agroecosystem management. Mycorrhiza 26:77–83. https://doi.org/10.1007/s00572-015-0651-6

    Article  PubMed  Google Scholar 

  27. Graham RC (2009) Serpentine geoecology of Western North America: geology, soils, and vegetation. Soil Sci 174:193. https://doi.org/10.1097/SS.0b013e318199f342

    Article  CAS  Google Scholar 

  28. Hart M, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344. https://doi.org/10.1046/j.0028-646X.2001.00312.x

    Article  Google Scholar 

  29. Hawkins H-J, Johansen A, George E (2000) Uptake and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil 226:275–285. https://doi.org/10.1023/A:1026500810385

    Article  CAS  Google Scholar 

  30. Heijden MGA, Martin F, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423. https://doi.org/10.1111/nph.13288

    Article  CAS  PubMed  Google Scholar 

  31. Husson F, Lê S, Pagès J (2017) Exploratory multivariate analysis by example using R. 2nd edition. Chapman & Hall/CRC, Boca Raton

  32. Jaffré T, L’Huillier L (2010aa) La végétation des roches ultramafiques ou terrains miniers. In : L’Huillier L, Jaffré T, Wulff A (eds) Mines et Environnement en Nouvelle-Calédonie : les milieux sur substrats ultramafiques et leur restauration. IAC Ed, Noumea, New Caledonia, pp 45–103

  33. Jaffré T, L’Huillier L (2010bb) Conditions de milieu des terrains miniers. In : L’Huillier L, Jaffré T, Wulff A (eds) Mines et Environnement en Nouvelle-Calédonie : les milieux sur substrats ultramafiques et leur restauration. IAC Ed, Noumea, New Caledonia, pp 33–44

  34. Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13:1164–1176. https://doi.org/10.1890/1051-0761(2003)13[1164:STATCS]2.0.CO;2

    Article  Google Scholar 

  35. Jansa J, Smith FA, Smith SE (2007) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi. New Phytol 177:779–789. https://doi.org/10.1111/j.1469-8137.2007.02294.x

    Article  CAS  PubMed  Google Scholar 

  36. Jolliffe I (2002) Principal component analysis. Springer 2nd edn

  37. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kazakou E, Dimitrakopoulos PG, Baker AJM, Reeves RD, Troumbis AY (2008) Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev 83:495–508. https://doi.org/10.1111/j.1469-185X.2008.00051.x

    CAS  Article  PubMed  Google Scholar 

  39. Kiers ET, Duhamel M, Beesetty Y, et al (2011) Reciprocal Rewards Stabilize Cooperation in the Mycorrhizal Symbiosis. Science 333:880–882. https://doi.org/10.1126/science.1208473

  40. Koch AM, Antunes PM, Maherali H, Hart MM, Klironomos JN (2017) Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not predict host plant growth. New Phytol 214:1330–1337. https://doi.org/10.1111/nph.14465

    Article  CAS  PubMed  Google Scholar 

  41. Koenker R (2017) Quantile Regression: 40 Years On. Annual Review of Economics 9:155–176. https://doi.org/10.1146/annurev-economics-063016-103651

  42. Koske RE, Gemma JN (1997) Mycorrhizae and succession in plantings of Beachgrass in sand dunes. Am J Bot 84:118–130. https://doi.org/10.2307/2445889

    Article  Google Scholar 

  43. Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223. https://doi.org/10.1111/j.1469-8137.2009.02835.x

    Article  CAS  Google Scholar 

  44. Lagrange A, Ducousso M, Jourand P, Majorel C, Amir H (2011) New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Caledonia. Can J Microbiol 57:21–28. https://doi.org/10.1139/W10-096

    Article  CAS  PubMed  Google Scholar 

  45. Lagrange A, Amir H, L’Huillier L (2013) Mycorrhizal status of Cyperaceae from New Caledonian ultramafic soils: effects of phosphorus availability on arbuscular mycorrhizal colonisation of Costularia comosa in field conditions. Mycorrhiza 23:655–661

    Article  PubMed  Google Scholar 

  46. Luçon S, Marion F, Niel JF, Pelletier B (1997) Rehabilitation des sites miniers sur roches ultramafiques en Nouvelle-Calédonie. In: Jaffré T, Reeves RD, Becquer T (eds) Écologie des milieux sur roches ultramafiques et sur sols métallifères. ORSTOM Ed. New Caledonia, Noumea, pp 297–303

    Google Scholar 

  47. Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748. https://doi.org/10.1126/science.1143082

    Article  CAS  PubMed  Google Scholar 

  48. Mardhiah U, Caruso T, Gurnell A, Rillig MC (2016) Arbuscular mycorrhizal fungal hyphae reduce soil erosion by surface water flow in a greenhouse experiment. Appl Soil Ecol 99:137–140. https://doi.org/10.1016/j.apsoil.2015.11.027

    Article  Google Scholar 

  49. Opel KL, Chung D, McCord BR (2010) A study of PCR inhibition mechanisms using real time PCR. J Forensic Sci 55:25–33. https://doi.org/10.1111/j.1556-4029.2009.01245.x

    Article  CAS  Google Scholar 

  50. Orłowska E, Ryszka P, Jurkiewicz A, Turnau K (2005) Effectiveness of arbuscular mycorrhizal fungal (AMF) strains in colonisation of plants involved in phytostabilisation of zinc wastes. Geoderma 129:92–98. https://doi.org/10.1016/j.geoderma.2004.12.036

    Article  CAS  Google Scholar 

  51. Orłowska E, Przybyłowicz W, Orlowski D, Turnau K, Mesjasz-Przybyłowicz J (2011) The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environ Pollut 159:3730–3738. https://doi.org/10.1016/j.envpol.2011.07.008

    Article  CAS  PubMed  Google Scholar 

  52. Perrier N, Amir H, Colin F (2006) Occurrence of mycorrhizal symbioses in the metal-rich lateritic soils of the Koniambo Massif, New Caledonia. Mycorrhiza 16:449–458. https://doi.org/10.1007/s00572-006-0057-6

    Article  PubMed  Google Scholar 

  53. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–IN18. https://doi.org/10.1016/S0007-1536(70)80110-3

    Article  Google Scholar 

  54. Porras-Soriano A, Soriano-Martín ML, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359. https://doi.org/10.1016/j.jplph.2009.02.010

    Article  CAS  Google Scholar 

  55. Powell JR, Parrent JL, Hart MM, et al (2009) Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc R Soc Lond B Biol Sci 276:4237–4245. https://doi.org/10.1098/rspb.2009.1015

  56. Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398. https://doi.org/10.1016/j.pbi.2007.05.004

    Article  CAS  PubMed  Google Scholar 

  57. R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna https://www.R-project.org/

    Google Scholar 

  58. Ruiz-Lozano JM, Aroca R (2010) Modulation of aquaporin genes by the arbuscular mycorrhizal symbiosis in relation to osmotic stress tolerance. In: Symbioses and stress. Springer, Dordrecht, pp 357–374

    Google Scholar 

  59. Shrivastava G, Ownley BH, Augé RM, et al (2015) Colonization by arbuscular mycorrhizal and endophytic fungi enhanced terpene production in tomato plants and their defense against a herbivorous insect. Symbiosis 65:65–74. doi: https://doi.org/10.1007/s13199-015-0319-1

  60. Singh DP, Kumar N, Bhargava SK, Barman SC (2010) Accumulation and translocation of heavy metals in soil and plants from fly ash contaminated area. J Environ Biol 31:421–430

    CAS  PubMed  Google Scholar 

  61. Smith SE, Read DJ (2008) Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants. In: Mycorrhizal symbiosis, 3rd edn. Academic Press, London, pp 145–187

    Google Scholar 

  62. St-Arnaud M, Vujanovic V (2007) Effect of the arbuscular mycorrhizal symbiosis on plant diseases and pests. In: Hamel C, Plenchette C (eds) Mycorrhizae in crop production. Haworth Food and Agricultural Products Press, New York, pp 67–122

    Google Scholar 

  63. Sutlovic D, Gamulin S, Definis-Gojanovic M, Gugic D, Andjelinovic S (2008) Interaction of humic acids with human DNA: proposed mechanisms and kinetics. ELECTROPHORESIS 29:1467–1472

    Article  CAS  PubMed  Google Scholar 

  64. Thonar C, Frossard E, Šmilauer P, Jansa J (2014) Competition and facilitation in synthetic communities of arbuscular mycorrhizal fungi. Mol Ecol 23:733–746. https://doi.org/10.1111/mec.12625

    Article  PubMed  Google Scholar 

  65. Trouvelot A, Kough J, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhisation VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson GS (ed) Mycorrhizae: physiology and genetics. INRA, Paris, pp 217–221

    Google Scholar 

  66. Vandenkoornhuyse P, Mahé S, Ineson P, et al (2007) Active root-inhabiting microbes identified by rapid incorporation of plant-derived carbon into RNA. PNAS 104:16970–16975. https://doi.org/10.1073/pnas.0705902104

  67. Wang S, Shi X, Sun H, Chen Y, Pan H, Yang W, Rafiq T (2014) Variations in metal tolerance and accumulation in three hydroponically cultivated varieties of Salix integra treated with lead. PLoS One 9(9):e108568. https://doi.org/10.1371/journal.pone.0108568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wu F, Zhang H, Fang F, Liu H, Tang M (2017) Arbuscular mycorrhizal fungi alter nitrogen allocation in the leaves of Populus × canadensis ‘Neva’. Plant Soil 421:477–491. https://doi.org/10.1007/s11104-017-3461-0

    Article  CAS  Google Scholar 

  69. Wulff A, L’Huillier L, Véa C, Jaffré T (2010) Espèces indigènes utilisables en revégétalisation. In: L’Huillier L, Jaffré T, Wulff A (eds) Mines et Environnement en Nouvelle-Calédonie : les milieux sur substrats ultramafiques et leur restauration. IAC Ed. New Caledonia, Noumea, pp 231–344

    Google Scholar 

  70. Yang H, Zhang Q, Koide RT, Hoeksema JD, Tang J, Bian X, Hu S, Chen X, Cahill J (2016) Taxonomic resolution is a determinant of biodiversity effects in arbuscular mycorrhizal fungal communities. J Ecol 105:219–228. https://doi.org/10.1111/1365-2745.12655

    Article  Google Scholar 

Download references

Funding

This study received financial support from CNRT “Nickel et son Environnement.”

Author information

Affiliations

Authors

Contributions

T.C. designed the research, provided AMF cultures, conducted the molecular and greenhouse experiment, analyzed data and wrote the manuscript; C.M. conducted the molecular analysis; D.R. contributed to the research supervision and wrote the manuscript; S.G. contributed to the statistical analysis; V.M. contributed to the greenhouse experiment; G.D. conducted statistical analysis; Y.C. contributed to the research supervision; H.A. supervised and designed the research, provided the funding, and wrote the manuscript.

Corresponding authors

Correspondence to Thomas Crossay or Hamid Amir.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1141 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Crossay, T., Majorel, C., Redecker, D. et al. Is a mixture of arbuscular mycorrhizal fungi better for plant growth than single-species inoculants?. Mycorrhiza 29, 325–339 (2019). https://doi.org/10.1007/s00572-019-00898-y

Download citation

Keywords

  • Arbuscular mycorrhizal fungi
  • Mixed inocula
  • Abiotic stress
  • Heavy metals
  • Restoration ecology
  • Ultramafic soil