Abdel-Azeem AM, Abdel-Moneim TS, Ibrahim ME, Hassan MAA, Saleh MY (2007) Effects of long-term heavy metal contamination on diversity of terricolous fungi and nematodes in Egypt-a case study. Water Air Soil Pollut 186:233–254. https://doi.org/10.1007/s11270-007-9480-3
Article
CAS
Google Scholar
Alguacil MM, Torrecillas E, Caravaca F, Fernández DA, Azcón R, Roldán A (2011) The application of an organic amendment modifies the arbuscular mycorrhizal fungal communities colonizing native seedlings grown in a heavy-metal-polluted soil. Soil Biol Biochem 43:1498–1508. https://doi.org/10.1016/j.soilbio.2011.03.026
Article
CAS
Google Scholar
Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881. https://doi.org/10.1016/j.chemosphere.2013.01.075
Article
CAS
PubMed
Google Scholar
Alkan N, Gadkar V, Coburn J, Yarden O, Kapulnik Y (2004) Quantification of the arbuscular mycorrhizal fungus Glomus intraradices in host tissue using real time polymerase chain reaction. New Phytol 161:877–885. https://doi.org/10.1046/j.1469-8137.2004.00975.x
Article
CAS
PubMed
Google Scholar
Anderson MJM (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46. https://doi.org/10.1111/j.1442-9993.2001.tb00081.x
Article
Google Scholar
Bahram M, Peay KG, Tedersoo L (2015) Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol 205:1454–1463. https://doi.org/10.1111/nph.13206
Article
CAS
PubMed
Google Scholar
Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manag 105:103–120. https://doi.org/10.1016/j.jenvman.2012.04.002
Article
CAS
Google Scholar
Chagnon P-L, Brisson J (2017) The role of mycorrhizal symbioses in phytotechnology. Botany 95:971–983. https://doi.org/10.1139/cjb-2017-0032
Article
Google Scholar
Chagnon P-L, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491. https://doi.org/10.1016/j.tplants.2013.05.001
Article
CAS
PubMed
Google Scholar
Chaturvedi R, Favas PJC, Pratas J, Varun M, Paul MS (2018) Effect of Glomus mosseae on accumulation efficiency, hazard index and antioxidant defense mechanisms in tomato under metal (loid) stress. Int J Phytoremediation 20:885–894. https://doi.org/10.1080/15226514.2018.1438360
Chen B, Nayuki K, Kuga Y, Zhang X, Wu S, Ohtomo R (2018) Uptake and intraradical immobilization of cadmium by arbuscular mycorrhizal fungi as revealed by a stable isotope tracer and synchrotron radiation μX-ray fluorescence analysis. Microbes Environ 33:257–263. https://doi.org/10.1264/jsme2.ME18010
Cid CV, Rodriguez JH, Salazar MJ, Blanco A, Pignata ML (2016) Effects of co-cropping Bidens pilosa (L.) and Tagetes minuta (L.) on bioaccumulation of Pb in Lactuca sativa (L.) growing in polluted agricultural soils. Int J Phytoremediation 18:908–917. https://doi.org/10.1080/15226514.2016.1156636
Cornejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160. https://doi.org/10.1016/j.scitotenv.2008.07.045
Article
CAS
PubMed
Google Scholar
de Cárcer DA, Denman SE, McSweeney C, Morrison M (2011) Evaluation of subsampling-based normalization strategies for tagged high-throughput sequencing data sets from gut microbiomes. Appl Environ Microbiol 77:8795–8798. https://doi.org/10.1128/AEM.05491-11
Article
CAS
PubMed
Google Scholar
de Fátima Pedroso D, Barbosa MV, dos Santos JV, Pinto FA, Siqueira JO, Carneiro MAC (2018) Arbuscular mycorrhizal fungi favor the initial growth of Acacia mangium, Sorghum bicolor, and Urochloa brizantha in soil contaminated with Zn, Cu, Pb, and Cd. Bull Environ Contam Toxicol 101:386–391. https://doi.org/10.1007/s00128-018-2405-6
Article
CAS
PubMed
Google Scholar
Dehn B, Schüepp H (1990) Influence of VA mycorrhizae on the uptake and distribution of heavy metals in plants. Agric Ecosyst Environ 29:79–83. https://doi.org/10.1016/0167-8809(90)90258-F
Article
Google Scholar
Del Val C, Barea JM, Azcon-Aguilar C (1999) Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils. Appl Environ Microbiol 65:718–723
Di Rienzo JA, Guzmán AW, Casanoves F (2002) A multiple-comparisons method based on the distribution of the root node distance of a binary tree. J Agric Biol Environ Stat 7:129–142. https://doi.org/10.1198/10857110260141193
Article
Google Scholar
Di Rienzo JA, Casanoves F, Balzarini MG, et al (2018) InfoStat versión 2018. Grupo InfoStat
Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366. https://doi.org/10.1890/0012-9615(1997)067[0345:SAAIST]2.0.CO;2
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461
Article
CAS
PubMed
Google Scholar
Egan CP, Rummel A, Kokkoris V, Klironomos J, Lekberg Y, Hart M (2018) Using mock communities of arbuscular mycorrhizal fungi to evaluate fidelity associated with Illumina sequencing. Fungal Ecol 33:52–64. https://doi.org/10.1016/j.funeco.2018.01.004
Article
Google Scholar
Faggioli VS, Cabello MN, Grilli G, Vasar M, Covacevich F, Öpik M (2019) Root colonizing and soil borne communities of arbuscular mycorrhizal fungi differ among soybean fields with contrasting historical land use. Agric Ecosyst Environ 269:174–182. https://doi.org/10.1016/j.agee.2018.10.002
Article
Google Scholar
García de León D, Cantero JJ, Moora M, Öpik M, Davison J, Vasar M, Jairus T, Zobel M (2018) Soybean cultivation supports a diverse arbuscular mycorrhizal fungal community in Central Argentina. Appl Soil Ecol 124:289–297. https://doi.org/10.1016/j.apsoil.2017.11.020
Article
Google Scholar
Gaur A, Adholeya A (2004) Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci:528–534
Gil-Cardeza ML, Ferri A, Cornejo P, Gomez E (2014) Distribution of chromium species in a Cr-polluted soil: presence of Cr(III) in glomalin related protein fraction. Sci Total Environ 493:828–833. https://doi.org/10.1016/j.scitotenv.2014.06.080
Article
CAS
PubMed
Google Scholar
González -Chavez C, D’haen J, Vangronsveld J, Dodd JC (2002) Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant Soil 240:287–297. https://doi.org/10.1023/A:101579462
González -Chavez MC, Carrillo-Gonzalez R, Wright SF, Nichols KA (2004) The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut 130:317–323. https://doi.org/10.1016/j.envpol.2004.01.004
Article
CAS
PubMed
Google Scholar
González-Chávez MC, Carrillo-Gonzalez R, Gutierrez-Castorena MC (2009) Natural attenuation in a slag heap contaminated with cadmium: the role of plants and arbuscular mycorrhizal fungi. J Hazard Mater 161:1288–1298. https://doi.org/10.1016/j.jhazmat.2008.04.110
Article
CAS
PubMed
Google Scholar
Gorgas JA,Tassile JL (2002) Regiones naturales de la Provincia de Córdoba. INTA EEA Manfredi, Agencia Córdoba Ambiente, Córdoba
Graziani SN, Salazar MJ, Pignata ML, Rodriguez JH (2016) Assessment of the root system of Brassica juncea (L.) czern. and Bidens pilosa L. exposed to lead polluted soils using rhizobox systems. Int J Phytoremediation 18:235–244. https://doi.org/10.1080/15226514.2015.1078770
Article
CAS
PubMed
Google Scholar
Grilli G, Urcelay C, Galetto L, Davison J, Vasar M, Saks Ü, Jairus T, Öpik M (2015) The composition of arbuscular mycorrhizal fungal communities in the roots of a ruderal forb is not related to the forest fragmentation process. Environ Microbiol 17:2709–2720. https://doi.org/10.1111/1462-2920.12623
Article
PubMed
Google Scholar
Hassan SED, Boon EVA, ST-Arnaud M, Hijri M (2011) Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal polluted soils. Mol Ecol 20:3469–3483. https://doi.org/10.1111/j.1365-294X.2011.05142.x
Article
CAS
Google Scholar
Hibbett DS, Taylor JW (2013) Fungal systematics: is a new age of enlightenment at hand? Nat Rev Microbiol 11:129–133. https://doi.org/10.1038/nrmicro2963
Article
CAS
PubMed
Google Scholar
Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146. https://doi.org/10.1016/j.phytochem.2006.09.023
Article
CAS
PubMed
Google Scholar
Huang X, Wang L, Ma F (2017) Arbuscular mycorrhizal fungus modulates the phytotoxicity of Cd via combined responses of enzymes, thiolic compounds, and essential elements in the roots of Phragmites australis. Chemosphere 187:221–229. https://doi.org/10.1016/j.chemosphere.2017.08.021
Igwe JC, Nnororm IC, Gbaruko BC (2005) Kinetics of radionuclides and heavy metals behaviour in soils: implications for plant growth. Afr J Biotechnol 4(13):1541–1547
Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182. https://doi.org/10.1093/bmb/ldg032
Article
PubMed
Google Scholar
Klironomos JN, Hart MM (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181–184. https://doi.org/10.1007/s00572-002-0169-6
Article
PubMed
Google Scholar
Krishnamoorthy R, Kim C-G, Subramanian P, Kim KY, Selvakumar G, Sa TM (2015) Arbuscular mycorrhizal fungi community structure, abundance and species richness changes in soil by different levels of heavy metal and metalloid concentration. PLoS One 10:e0128784
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high-throughput sequencing of amplified markers–a user’s guide. New Phytol 199:288–299. https://doi.org/10.1111/nph.12243
Article
CAS
PubMed
PubMed Central
Google Scholar
Long LK, Yao Q, Guo J, Yang RH, Huang YH, Zhu HH (2010) Molecular community analysis of arbuscular mycorrhizal fungi associated with five selected plant species from heavy metal polluted soils. Eur J Soil Biol 46:288–294. https://doi.org/10.1016/j.ejsobi.2010.06.003
Article
Google Scholar
Lopes Leal P, Varón-López M, Gonçalves de Oliveira Prado I, Valentim dos Santos J, Fonsêca Sousa Soares CR, Siqueira JO, de Souza Moreira FM (2016) Enrichment of arbuscular mycorrhizal fungi in a contaminated soil after rehabilitation. Braz J Microbiol 47:853–862. https://doi.org/10.1016/j.bjm.2016.06.001
Article
CAS
PubMed
PubMed Central
Google Scholar
Moosavi SG, Seghatoleslami MJ (2013) Phytoremediation: a review. Adv Agric Biol 1:5–11
Google Scholar
Morton JB, Redecker D (2001) Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93:181–195. https://doi.org/10.2307/3761615
Article
Google Scholar
Oksanen J (2013) Multivariate analysis of ecological communities in R: vegan tutorial
Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier Ü, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241. https://doi.org/10.1111/j.1469-8137.2010.03334.x
Article
CAS
PubMed
Google Scholar
Öpik M, Davison J, Moora M, Zobel M (2013) DNA-based detection and identification of Glomeromycota: the virtual taxonomy of environmental sequences. Botany 92:135–147. https://doi.org/10.1139/cjb-2013-0110
Article
CAS
Google Scholar
Pawlowska TE, Charvat I (2004) Heavy-metal stress and developmental patterns of arbuscular mycorrhizal fungi. Appl Environ Microbiol 70:6643–6649. https://doi.org/10.1128/AEM.70.11.6643-6649.2004
Article
CAS
PubMed
PubMed Central
Google Scholar
Pepper IL, Gerba CP, Newby DT, Rice CW (2009) Soil: a public health threat or savior? Crit Rev Environ Sci Technol 39:416–432. https://doi.org/10.1080/10643380701664748
Article
Google Scholar
Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H (2009) Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc R Soc Lond B Biol Sci 276:4237–4245. https://doi.org/10.1098/rspb.2009.1015
Article
Google Scholar
R Development Team (2018) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. URL http://www.R-project.org/
Regvar M, Vogel-Mikuš K (2008) Arbuscular mycorrhiza in metal hyperaccumulating plants. In: Mycorrhiza. Springer, pp 261–280
Robert DW (2012) Labdsv: ordination and multivariate analysis for ecology. R package version 1.5–0
Rodríguez-Eugenio N, McLaughlin M, Pennock D (2018) Soil pollution: a hidden reality. FAO, Rome 142 pp
Google Scholar
Salazar MJ, Pignata ML (2014) Lead accumulation in plants grown in polluted soils. Screening of native species for phytoremediation. J Geochem Explor 137:29–36. https://doi.org/10.1016/j.gexplo.2013.11.003
Article
CAS
Google Scholar
Salazar MJ, Rodriguez JH, Cid CV, Bernardelli CE, Donati ER, Pignata ML (2016) Soil variables that determine lead accumulation in Bidens pilosa L. and Tagetes
minuta L. growing in polluted soils. Geoderma 279:97–108. https://doi.org/10.1016/j.geoderma.2016.06.011
Salazar MJ, Menoyo E, Faggioli V, Geml J, Cabello M, Rodriguez JH, Marro N, Pardo A, Pignata ML, Becerra AG (2018) Pb accumulation in spores of arbuscular mycorrhizal fungi. Sci Total Environ 643:238–246. https://doi.org/10.1016/j.scitotenv.2018.06.199
Article
CAS
PubMed
Google Scholar
Sánchez-Castro I, Ferrol N, Cornejo P, Barea JM (2012) Temporal dynamics of arbuscular mycorrhizal fungi colonizing roots of representative shrub species in a semi-arid Mediterranean ecosystem. Mycorrhiza 22:449–460. https://doi.org/10.1007/s00572-011-0421-z
Article
PubMed
Google Scholar
Sánchez-Castro I, Gianinazzi-Pearson V, Cleyet-Marel JC, Baudoin E, van Tuinen D (2017) Glomeromycota communities survive extreme levels of metal toxicity in an orphan mining site. Sci Total Environ 598:121–128. https://doi.org/10.1016/j.scitotenv.2017.04.084
Article
CAS
PubMed
Google Scholar
Sato K, Suyama Y, Saito M, Sugawara K (2005) A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis. Grassl Sci 51:179–181. https://doi.org/10.1111/j.1744-697X.2005.00023.x
Article
CAS
Google Scholar
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09
Article
CAS
PubMed
PubMed Central
Google Scholar
Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic press, Cambridge
Google Scholar
Sosa M, Salazar MJ, Zygadlo JA, Wannaz ED (2016) Effects of Pb in Tagetes minuta L.(Asteraceae) leaves and its relationship with volatile compounds. Ind Crop Prod 82:37–43. https://doi.org/10.1016/j.indcrop.2015.12.011
Article
CAS
Google Scholar
Sudová R, Doubková P, Vosátka M (2008) Mycorrhizal association of Agrostis capillaris and Glomus intraradices under heavy metal stress: combination of plant clones and fungal isolates from contaminated and uncontaminated substrates. Appl Soil Ecol 40:19–29. https://doi.org/10.1016/j.apsoil.2008.02.007
Article
Google Scholar
Swartjes FA (2011) Dealing with contaminated sites: from theory towards practical application. Springer Science & Business Media
Tedersoo L, Sánchez-Ramírez S, Koljalg U, Bahram M, Döring M, Schigel D et al (2018) High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers 90:135–159. https://doi.org/10.1007/s13225-018-0401-0
Article
Google Scholar
Turnau K, Ryszka P, Gianinazzi-Pearson V, Van Tuinen D (2001) Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in southern Poland. Mycorrhiza 10:169–174. https://doi.org/10.1007/s005720000073
Article
CAS
Google Scholar
Turrini A, Saran M, Giovannetti M, Oehl F (2018) Rhizoglomus venetianum, a new arbuscular mycorrhizal fungal species from a heavy metal-contaminated site, downtown Venice in Italy. Mycol Prog 17:1213–1224. https://doi.org/10.1007/s11557-018-1437-y
Article
Google Scholar
USDA (ed) (2014) USDA soil classification. Soil survey staff. Keys to soil taxonomy, 12th edn. USDA-Natural Resources Conservation Service, Washington, DC
Google Scholar
Vallino M, Massa N, Lumini E, Bianciotto V, Berta G, Bonfante P (2006) Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in northern Italy. Environ Microbiol 8:971–983. https://doi.org/10.1111/j.1462-2920.2006.00980.x
Article
PubMed
Google Scholar
Whitfield L, Richards AJ, Rimmer DL (2004) Relationships between soil heavy metal concentration and mycorrhizal colonisation in Thymus polytrichus in northern England. Mycorrhiza 14:55–62. https://doi.org/10.1007/s00572-003-0268-z
Article
CAS
PubMed
Google Scholar
Wong CC, Wu SC, Kuek C, Khan AG, Wong MH (2007) The role of mycorrhizae associated with vetiver grown in Pb/Zn contaminated soils: greenhouse study. Restor Ecol 15:60–67. https://doi.org/10.1111/j.1526-100X.2006.00190.x
Article
Google Scholar
Wu FY, Bi YL, Leung HM, Ye ZH, Lin XG, Wong MH (2010) Accumulation of As, Pb, Zn, Cd and Cu and arbuscular mycorrhizal status in populations of Cynodon dactylon grown on metal-contaminated soils. Appl Soil Ecol 44:213–218. https://doi.org/10.1016/j.apsoil.2009.12.008
Article
Google Scholar
Zarei M, König S, Hempel S, Nekouei MK, Savaghebi G, Buscot F (2008) Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region. Environ Pollut 156:1277–1283. https://doi.org/10.1016/j.envpol.2008.03.006
Article
CAS
PubMed
Google Scholar
Zarei M, Hempel S, Wubet T, Schäfer T, Savaghebi G, Jouzani GS, Nekouei MK, Buscot F (2010) Molecular diversity of arbuscular mycorrhizal fungi in relation to soil chemical properties and heavy metal contamination. Environ Pollut 158:2757–2765. https://doi.org/10.1016/j.envpol.2010.04.017
Article
CAS
PubMed
Google Scholar