New insights into black truffle biology: discovery of the potential connecting structure between a Tuber aestivum ascocarp and its host root

Abstract

According to isotopic labeling experiments, most of the carbon used by truffle (Tuber sp.) fruiting bodies to develop underground is provided by host trees, suggesting that trees and truffles are physically connected. However, such physical link between trees and truffle fruiting bodies has never been observed. We discovered fruiting bodies of Tuber aestivum adhering to the walls of a belowground quarry and we took advantage of this unique situation to analyze the physical structure that supported these fruiting bodies in the open air. Observation of transversal sections of the attachment structure indicated that it was organized in ducts made of gleba-like tissue and connected to a network of hyphae traveling across soil particles. Only one mating type was detected by PCR in the gleba and in the attachment structure, suggesting that these two organs are from maternal origin, leaving open the question of the location of the opposite paternal mating type.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Antony-Babu S, Deveau A, Van Nostrand JD et al (2014) Black truffle-associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles. Environ Microbiol 16:2831–2847

    Article  CAS  PubMed  Google Scholar 

  2. Barry D, Callot G, Janex-Favre MC, Parguey-Leduc A., Pargney JC (1993) Morphologie et structure des hyphes externes observées sur le péridium des Tuber à écailles: évolution au cours du développement de l'ascocarpe . Canadian Journal of Botany 71 (4):609–619

  3. Barry D, Staunton S, Callot G (1994) Mode of the absorption of water and nutrients by ascocarps of Tuber melanosporum and Tuber aestivum. A radioactive tracer technique. Can J Bot 72:317–322

    Article  Google Scholar 

  4. Callot G (1999) La truffe, la terre, la vie. INRA Ed, Paris

    Google Scholar 

  5. De la Varga H, Le Tacon F, Lagoguet M et al (2017) Five years investigation of female and male genotypes in Périgord black truffle (Tuber melanosporum Vittad.) revealed contrasted reproduction strategies. Environ Microbiol 19:2604–2615

    Article  CAS  PubMed  Google Scholar 

  6. Duchaufour P, Bonneau M (1959) Une nouvelle méthode de dosage du phosphore assimilable dans les sols forestiers. Bull Assoc Fr Étude Sol 4:193–198

    Google Scholar 

  7. Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature 287:834–836

    Article  Google Scholar 

  8. Le Tacon F (2017) Les truffes. Biologie, écologie, domestication. AgroParitech, Nancy

  9. Le Tacon F, Zeller B, Plain C et al (2013) Carbon transfer from the host to Tuber melanosporum mycorrhizas and ascocarps followed using a 13C pulse-labeling technique. PLoS One 8:e64626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Le Tacon F, Rubini A, Murat C et al (2015) Certainties and uncertainties about the life cycle of the Périgord black truffle (Tuber melanosporum Vittad.). Ann For Sci 73:105–117

    Article  Google Scholar 

  11. Metson, A.J., 1956. Methods of chemical analysis for soil survey samples. NZ Soil Bur Bull n°12

  12. Molinier V, Bouffaud M-L, Castel T, Mounier A, Colombet A, Recorbet G, Frochot H, Wipf D (2013) Monitoring the fate of a 30-year-old truffle orchard in Burgundy: from Tuber melanosporum to Tuber aestivum. Agrofor Syst 87:1439–1449

    Article  Google Scholar 

  13. Molinier V, Murat C, Frochot H, Wipf D, Splivallo R (2015) Fine-scale spatial genetic structure analysis of the black truffle Tuber aestivum and its link to aroma variability. Environ Microbiol 17:3039–3050

    Article  PubMed  Google Scholar 

  14. Molinier V, Peter M, Stobbe U, Egli S (2016) The Burgundy truffle (Tuber aestivum syn. uncinatum): a truffle species with a wide habitat range over Europe. In: A Zambonelli, M Iotti & CM (ed) True truffle (Tuber spp.) world. Soil Ecol Syst Biochem Springer, pp 33–47

  15. Murat C (2015) Forty years of inoculating seedlings with truffle fungi: past and future perspectives. Mycorrhiza 25:77–81

    Article  PubMed  Google Scholar 

  16. Murat C, Rubini A, Riccioni C, de la Varga H, Akroume E, Belfiori B, Guaragno M, le Tacon F, Robin C, Halkett F, Martin F, Paolocci F (2013) Fine-scale spatial genetic structure of the black truffle (Tuber melanosporum) investigated with neutral microsatellites and functional mating type genes. New Phytol 199:176–187

    Article  CAS  PubMed  Google Scholar 

  17. Robinson JBD (1967) Soil particle-size fractions and nitrogen mineralization. J Soil Sci 18:109–117

    Article  CAS  Google Scholar 

  18. Rouquerolle T, Payre H (1975) Conséquences de quelques particularités biologiques des Tuber sur les caractères des cultures de mycélium et sur la formation des truffes. Rev Mycol 29:213–224

    Google Scholar 

  19. Stobbe U, Egli S, Tegel W, Peter M, Sproll L, Büntgen U (2013) Potential and limitations of Burgundy truffle cultivation. Appl Microbiol Biotechnol 97:5215–5224

    Article  CAS  PubMed  Google Scholar 

  20. Taschen E, Rousset F, Sauve M, Benoit L, Dubois MP, Richard F, Selosse MA (2016) How the truffle got its mate: insights from genetic structure in spontaneous and planted Mediterranean populations of Tuber melanosporum. Mol Ecol 25:5611–5627

    Article  CAS  PubMed  Google Scholar 

  21. Teramoto M, Wu B, Hogetsu T (2012) Transfer of 14C-photosynthate to the sporocarp of an ectomycorrhizal fungus Laccaria amethystina. Mycorrhiza 22:219–225

    Article  CAS  PubMed  Google Scholar 

  22. Zarivi O, Cesare P, Ragnelli AM, Aimola P, Leonardi M, Bonfigli A, Colafarina S, Poma AM, Miranda M, Pacioni G (2015) Validation of reference genes for quantitative real-time PCR in Périgord black truffle (Tuber melanosporum) developmental stages. Phytochemistry 116:78–86. https://doi.org/10.1016/j.phytochem.2015.02.024

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to the two reviewers who have greatly improved the text.

Funding

This work was funded by the Laboratory of Excellence Advanced Research on the Biology of Tree and Forest Ecosystems (ARBRE; ANR-11-LABX 0002 01).

Author information

Affiliations

Authors

Contributions

Conceived and designed the work: FLT, AD. Contributed reagents/materials/analysis tools: AD, PC, FP, JPM, FT, MH, JR, CM. Analyzed the data: AD, FLT. Wrote the first draft: FLT. Edited manuscript: FLT, AD, CM. All authors read and commented on the manuscript.

Corresponding author

Correspondence to Aurélie Deveau.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deveau, A., Clowez, P., Petit, F. et al. New insights into black truffle biology: discovery of the potential connecting structure between a Tuber aestivum ascocarp and its host root. Mycorrhiza 29, 219–226 (2019). https://doi.org/10.1007/s00572-019-00892-4

Download citation

Keywords

  • Truffle
  • Tuber aestivum
  • Ectomycorrhizae
  • Symbiosis
  • Fruiting body
  • Anatomy
  • Mating type