Skip to main content
Log in

Mycelium of Terfezia claveryi as inoculum source to produce desert truffle mycorrhizal plants

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Terfezia claveryi Chatin was the first desert truffle species to be cultivated, the mycorrhizal plants being successfully produced by using both desert truffle spores and mycelia. However, it is more advisable to use mycelium than spores whenever possible and profitable. Given the low yields of mycelia obtained using traditional culture methods of this truffle, the medium composition was modified in an attempt to determine its nutritional requirements. For this, an assay involving response surface methodology was performed using Box-Behnken design to find the optimal parameters for the high production of mycelial biomass. The best results were obtained with glucose as carbon source, buffering the pH at 5 during culture, adding a pool of vitamins, and adjusting the optimal concentrations of carbon and nitrogen sources of the MMN medium. Biomass production increased from 0.3 to 3 g L−1 dry weight and productivity increased from 10.7 to 95.8 mg L−1 day−1 dry weight. The produced mycelium was able to colonize Helianthemum roots efficiently, providing more than 50% ectomycorrhizal colonization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bécard G, Fortin J (1988) Early events of vesicular–arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218. https://doi.org/10.1111/j.1469-8137.1988.tb03698.x

    Article  Google Scholar 

  • Bordallo JJ, Rodríguez A, Muñoz-Mohedano JM, Suz LM, Honrubia M, Morte A (2013) Five new Terfezia species from the Iberian Peninsula. Mycotaxon 124:189–208. https://doi.org/10.5248/124.189

    Article  Google Scholar 

  • Box GE, Behnken DW (1960) Some new three level designs for the study of quantitative variables. Technometrics 2:455–475

    Article  Google Scholar 

  • Carrillo C, Díaz G, Honrubia M (2004) Improving the production of ectomycorrhizal fungus mycelium in a bioreactor by measuring the ergosterol content. Eng Life Sci 4:43–45. https://doi.org/10.1002/elsc.200420003

    Article  CAS  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116. https://doi.org/10.1007/BF02670468

    Article  CAS  Google Scholar 

  • Chávez D, Machuca Á, Aguirre C, Palfner G (2014) Optimización del crecimiento miceliar de los hongos ectomicorrízicos Lactarius quieticolor y Rhizopogon roseolus utilizando metodología de superficie de respuesta. XXII Congreso Latinoamericano de Microbiología-ALAM, Cartagena de Indias, Colombia, 4–8 noviembre 2014

  • Cochrane VW (1958) Physiology of fungi. Wiley, London

    Book  Google Scholar 

  • Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandao GC, da Silva EGP, Protugal LA, dos Reis PS, Souza AS, dos Santos WNL (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186. https://doi.org/10.1016/j.aca.2007.07.011

    Article  CAS  PubMed  Google Scholar 

  • Garcia K, Delaux PM, Cope KR, Ané JM (2015) Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses. New Phytol 208:79–87. https://doi.org/10.1111/nph.13423

    Article  PubMed  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500. https://doi.org/10.1111/j.1469-8137.1980.tb04556.x

    Article  Google Scholar 

  • Griffin DH (1996) Fungal physiology. Wiley, London

    Google Scholar 

  • Gutiérrez A, Morte A, Honrubia M (2003) Morphological characterization of the mycorrhiza formed by Helianthemum almeriense Pau with Terfezia claveryi Chatin and Picoa lefebvrei (Pat.) Maire. Mycorrhiza 13:299–307. https://doi.org/10.1007/s00572-003-0236-7

    Article  PubMed  Google Scholar 

  • Honrubia M, Andrino A, Morte A (2014) Domestication: preparation and maintenance of plots. In: Kagan-Zur V, Roth-Bejerano N, Sitrit Y, Morte A (eds) Desert truffles—phylogeny, physiology, distribution and domestication. Soil biology, vol 38. Springer, Berlin, pp 367–387. https://doi.org/10.1007/978-3-642-40096-4_22

    Google Scholar 

  • Iotti M, Piattoni F, Leonardi P, Hall IR, Zambonelli A (2016) First evidence for truffle production from plants inoculated with mycelial pure cultures. Mycorrhiza 26:793–798. https://doi.org/10.1007/s00572-016-0703-6

    Article  PubMed  Google Scholar 

  • Jennings DH (1995) The physiology of fungal nutrition. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kumar S, Mishra A (2017) Optimization of laccase production from WRF-1 on groundnut shell and cyanobacterial biomass: by application of Box-Behnken experimental design. J Microbiol Biotechnol Res 1:33–53

    Google Scholar 

  • Liu G-Q, Wang X-L (2007) Optimization of critical medium components using response surface methodology for biomass and extracellular polysaccharide production by Agaricus blazei. Appl Microbiol Biotechnol 74:78–83. https://doi.org/10.1007/s00253-006-0661-6

    Article  CAS  PubMed  Google Scholar 

  • Liu R-S, Li D-S, Li H-M, Tang Y-J (2008) Response surface modeling the significance of nitrogen source on the cell growth and Tuber polysaccharides production by submerged cultivation of Chinese truffle Tuber sinense. Process Biochem 43:868–876. https://doi.org/10.1016/j.procbio.2008.04.009

    Article  CAS  Google Scholar 

  • Liu Q-N, Liu R-S, Wang Y-H, Mi Z-Y, Li D-S, Zhong J-J, Tang Y-J (2009) Fed-batch fermentation of Tuber melanosporum for the hyperproduction of mycelia and bioactive Tuber polysaccharides. Bioresour Technol 100:3644–3649. https://doi.org/10.1016/j.biortech.2009.02.037

    Article  CAS  PubMed  Google Scholar 

  • López AMT, Díaz JCQ, Garcés LA (2011) Efecto de nutrientes sobre la producción de biomasa del hongo medicinal Ganoderma lucidum. Rev Colomb Biotecnol 13:103–109

    Google Scholar 

  • López-Nicolás JM, Pérez-Gilabert M, García-Carmona F, Lozano-Carrillo MC, Morte A (2013) Mycelium growth stimulation of the desert truffle Terfezia claveryi chatin by β-cyclodextrin. Biotechnol Prog 29:1558–1564. https://doi.org/10.1002/btpr.1791

    Article  CAS  PubMed  Google Scholar 

  • Lott JA, Turner K (1975) Evaluation of Trinder’s glucose oxidase method for measuring glucose in serum and urine. Clin Chem 21:1754–1760

    CAS  PubMed  Google Scholar 

  • Mao X-B, Eksriwong T, Chauvatcharin S, Zhong J-J (2005) Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris. Process Biochem 40:1667–1672. https://doi.org/10.1016/j.procbio.2004.06.046

    Article  CAS  Google Scholar 

  • Marx D (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163

    Google Scholar 

  • Morte A, Honrubia M (1994) Método para la micorrización in vitro de plantas micropropagadas de Helianthemum con Terfezia claveryi. Patent 9402430, University of Murcia, Spain

  • Morte A, Honrubia M (1997) Micropropagation of Helianthemum almeriense. In: Bajaj YPS (ed) High-tech and micropropagation VI, vol 40. Springer, Berlin, pp 163–177. https://doi.org/10.1007/978-3-662-03354-8_12

    Chapter  Google Scholar 

  • Morte A, Honrubia M (2009) Biotecnology for the industrial production of ectomycorrhizal inoculum and mycorrhizal plants. In: Ashok KC, Varma A (eds) A textbook of molecular biotechnology. pp 691–704

  • Morte A, Dieste C, Díaz G, Gutiérrez A, Navarro A, Honrubia M (2004) Production of Terfezia olbiensis mycelial inoculum in a bioreactor. Act 1er Symp Champignons Hypoges du Basin Mediterraneen, Rabat, Morocco, pp 146–149

  • Morte A, Honrubia M, Gutiérrez A (2008) Biotechnology and cultivation of desert truffles. In: Varma A (ed) Mycorrhiza: state of the art genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics. Springer, Berlin, pp 467–483

    Chapter  Google Scholar 

  • Morte A, Zamora M, Gutiérrez A, Honrubia M (2009) Desert truffle cultivation in semiarid Mediterranean areas. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas-functional processes and ecological impact. Springer, Berlin, pp 221–233

    Chapter  Google Scholar 

  • Morte A, Andrino A, Honrubia M, Navarro-Ródenas A (2012) Terfezia cultivation in arid and semiarid soils. In: Zambonelli A, Bonito G (eds) Edible ectomycorrhizal mushrooms. Soil biology, vol 34. Springer, Berlin, pp 241–263. https://doi.org/10.1007/978-3-642-33823-6_14

    Google Scholar 

  • Morte A, Pérez-Gilabert M, Gutiérrez A, Arenas F, Marqués-Gálvez JE, Bordallo JJ, Rodríguez A, Berná LM, Lozano-Carrillo C, Navarro-Ródenas A (2017) Basic and applied research for desert truffle cultivation. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza—eco-physiology, secondary metabolites, Nanomaterials. Springer, Berlin, pp 23–42. https://doi.org/10.1007/978-3-319-57849-1_2

    Chapter  Google Scholar 

  • Moser M (1960) Die Gattung Phlegmacium, S. 59, J Klinkhardt, Bad Heilbrunn

  • Natrella M (2010) NIST/SEMATECH e-handbook of statistical methods. In: Croarkin C, Tobias P, Filliben JJ, Hembree B, Guthrie W, Trutna L, Prins J (eds) Engineering statistics handbook. http://www.itl.nist.gov/div898/handbook/

  • Navarro-Ródenas A, Lozano-Carrillo MC, Pérez-Gilabert M, Morte A (2011) Effect of water stress on in vitro mycelium cultures of two mycorrhizal desert truffles. Mycorrhiza 21:247–253. https://doi.org/10.1007/s00572-010-0329-z

    Article  PubMed  Google Scholar 

  • Navarro-Ródenas A, Pérez-Gilabert M, Torrente P, Morte A (2012) The role of phosphorus in the ectendomycorrhiza continuum of desert truffle mycorrhizal plants. Mycorrhiza 22:565–575. https://doi.org/10.1007/s00572-012-0434-2

    Article  CAS  PubMed  Google Scholar 

  • Navarro-Ródenas A, Berná LM, Lozano-Carrillo C, Andrino A, Morte A (2016) Beneficial native bacteria improve survival and mycorrhization of desert truffle mycorrhizal plants in nursery conditions. Mycorrhiza 26:769–779. https://doi.org/10.1007/s00572-016-0711-6

    Article  CAS  PubMed  Google Scholar 

  • Pradella J, Zuccolo M, Reis Lopes S, Simoes Oliveira M (1991) Pisolithus tinctorius vegetative mycelia production: effects of nitrogen sources and cultivation in stirred tank fermenter. Rev Microbiol 22:7–11

    CAS  Google Scholar 

  • Rossi MJ, Oliveira VL (2011) Growth of the ectomycorrhizal fungus Pisolithus microcarpus in different nutritional conditions. Braz J Microbiol 42:624–632. https://doi.org/10.1590/S1517-83822011000200027

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi M, Souza J, Oliveira V (2002) Inoculum production of the ectomycorrhizal fungus Pisolithus microcarpus in an airlift bioreactor. Appl Microbiol Biotechnol 59:175–181. https://doi.org/10.1007/s00253-002-0999-3

    Article  CAS  PubMed  Google Scholar 

  • Rossi MJ, Furigo A, Oliveira VL (2007) Inoculant production of ectomycorrhizal fungi by solid and submerged fermentations. Food Technol Biotechnol 45:277

    Google Scholar 

  • Rubini A, Belfiori B, Riccioni C, Tisserant E, Arcioni S, Martin F, Paolocci F (2011) Isolation and characterization of MAT genes in the symbiotic ascomycete Tuber melanosporum. New Phytol 189:710–722. https://doi.org/10.1111/j.1469-8137.2010.03492.x

    Article  CAS  PubMed  Google Scholar 

  • Sánchez F, Honrubia M, Torres P (2001) Effects of pH, water stress and temperature on in vitro cultures of ectomycorrhizal fungi from Mediterranean forests. Cryptogam Mycol 22:243–258

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  • Stanbury PF, Whitaker A, Hall SJ (2013) Culture presevation and inoculum development. In: Principles of fermentation technology. Elsevier, pp 335–399

  • Trinder P (1969) Determination of glucose concentration in the blood. Ann Clin Biochem 6:24–27

    Article  CAS  Google Scholar 

  • Wang F, Zhang J, Hao L, Jia S, Ba J, Niu S (2012) Optimization of submerged culture conditions for mycelial growth and extracellular polysaccharide production by Coriolus versiolor. J Bioprocess Biotech 2:124–129

    Article  Google Scholar 

  • Wei Z-H, Duan Y-Y, Qian Y-Q, Guo X-F, Li Y-J, Jin S-H, Zhou Z-X, Shan S-Y, Wang C-R, Chen X-J, Zheng Y, Zhong J-J (2014) Screening of Ganoderma strains with high polysaccharides and ganoderic acid contents and optimization of the fermentation medium by statistical methods. Bioprocess Biosyst Eng 37:1789–1797. https://doi.org/10.1007/s00449-014-1152-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by projects 19484/PI/14 (Fundación Séneca of Region of Murcia, FEDER, Spain) and CGL2016-78946-R (AEI-FEDER, UE). F. Arenas thanks the Ministerio de Economía y Competitividad (MINECO) for financial resources from the Youth Employment Initiative (IEJ) and the European Social Fund (FSE) (PEJ-2014-A-83659). D. Chávez would like to thank the Chilean National Council for Science and Technology CONICYT 21110038 for the assigned postgraduate grant. A. Navarro-Ródenas is grateful to the University of Murcia for a postdoctoral contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asunción Morte.

Electronic supplementary material

Fig. S1

Summary of the different experiments performed. (JPG 61 kb)

Fig. S2

Parameter profile during mycelial growth of Terfezia claveryi in bioreactor. Symbols for the parameters used: pH (short dash), mL of NaOH added (dotted) and dissolved oxygen (%DO) (solid). (DOCX 90 kb)

Table S1

(DOCX 14 kb)

Table S2

(DOCX 13 kb)

Table S3

(DOCX 13 kb)

Table S4

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arenas, F., Navarro-Ródenas, A., Chávez, D. et al. Mycelium of Terfezia claveryi as inoculum source to produce desert truffle mycorrhizal plants. Mycorrhiza 28, 691–701 (2018). https://doi.org/10.1007/s00572-018-0867-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-018-0867-3

Keywords

Navigation