, Volume 28, Issue 3, pp 221–233 | Cite as

Management regime is the most important factor influencing ectomycorrhizal species community in Norway spruce forests after windthrow

  • Martina VašutováEmail author
  • Magda Edwards-Jonášová
  • Petra Veselá
  • Lenka Effenberková
  • Peter Fleischer
  • Pavel Cudlín
Original Article


Ectomycorrhizal (ECM) fungi, as symbionts of many tree species in temperate forests, are thought to play an important role in forest regeneration processes after large disturbances. Their reaction to different disturbance and management regimes was studied in spruce forests (Lariceto-Piceetum) 10 years after a severe windthrow in the Tatra National Park (Slovak Republic). ECM community structure was compared between different “management types″—cleared area (EXT), area affected by wildfire (FIRE), uncleared area left for natural development (NEX), and mature forest as a control (REF). Based on Illumina sequencing of soil samples, we determined that the percentage of sequences assigned to ECM fungi decreased with increasing disturbance and management intensity (REF → NEX → EXT → FIRE). Similarly, the total number of ECM species per each of ten sampling points per plot (100 ha) differed between managed (EXT-11 species, FIRE-9) and unmanaged (NEX-16, REF-14) treatments. On the other hand, the percentage of sequences belonging to ericoid mycorrhizal fungi increased. Management type significantly influenced the composition of the ECM community, while vegetation and soil characteristics explained less data variation. The ECM species assemblage of the unmanaged site (NEX) was the most similar to the mature forest, while that of the burnt site was the most different. Thelephora terrestris dominated in all treatments affected by windthrow, accompanied by Tylospora fibrillosa (NEX) and Tylospora asterophora (EXT and FIRE). Management regime was also the most important factor affecting ECM species composition on the roots of spruce seedlings assessed by Sanger sequencing.


Ectomycorrhiza Windthrow Fire Picea abies Forest regeneration Next generation sequencing Fungi 



This work was supported by the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I, grant No. LO1415 and grant No. LD 15044. We thank Filip Holub, Jan Purkyt, Martin Čermák, Ondřej Cudlín, Jan Červenka, and students from the Faculty of Forestry, Mendel University in Brno for field and lab assistance. Petra Havlíčková helped with the amplicon sequencing.

Supplementary material

572_2018_820_MOESM1_ESM.xlsx (56 kb)
ESM 1 (XLSX 55 kb)
572_2018_820_MOESM2_ESM.jpg (3.7 mb)
ESM 2 Proportion of the most abundant ECM species at each sampling point (JPEG 3740 kb)
572_2018_820_MOESM3_ESM.pdf (192 kb)
ESM 3 (PDF 191 kb)


  1. Abarenkov K, Henrik Nilsson R, Larsson KH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AF, Tedersoo L, Ursing BM, Vrålstad T, Liimatainen K, Peintner U, Kõljalg U (2010) The UNITE database for molecular identification of fungi – recent updates and future perspectives. New Phytol 186(2):281–285. CrossRefPubMedGoogle Scholar
  2. Agerer R (2006) Fungal relationships and structural identity of their ectomycorrhizae. Mycol Prog 5(2):67–107. CrossRefGoogle Scholar
  3. Agerer R, Rambold G (2004-2015) DEEMY - an information system for characterization and determination of ectomycorrhizae. Accessed 9 Apr 2015
  4. Barker JS, Simard SW, Jones MD, Durall DM (2013) Ectomycorrhizal fungal community assembly on regenerating Douglas-fir after wildfire and clearcut harvesting. Oecologia 172(4):1179–1189. CrossRefPubMedGoogle Scholar
  5. Bernicchia A, Gorjón SP (2010) Corticiaceae s.l. Fungi Europei n°12. Ed. Candusso. Alassio. 1008 pGoogle Scholar
  6. Bengtsson J, Nilsson SG, Franc A, Menozzi P (2000) Biodiversity, disturbances, ecosystem function and management of European forests. Forest Ecol Manag 132(1):39–50. CrossRefGoogle Scholar
  7. Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2007) GenBank. Nucleic Acids Res 41:36–41CrossRefGoogle Scholar
  8. Buscardo E, Rodríguez-Echeverría S, Freitas H, De Angelis P, Pereira JS, Muller LA (2015) Contrasting soil fungal communities in Mediterranean pine forests subjected to different wildfire frequencies. Fungal Divers 70(1):85–99. CrossRefGoogle Scholar
  9. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Don A, Bärwolff M, Kalbitz K, Andruschkewitsch R, Jungkunst HF, Schulze ED (2012) No rapid soil carbon loss after a windthrow event in the high Tatra. For Ecol Manag 276:239–246. CrossRefGoogle Scholar
  11. Dvořák D, Vašutová M, Hofmeister J, Beran M, Hošek J, Běťák J, Burel J, Deckerová H (2017) Macrofungal diversity patterns in central European forests affirm the key importance of old-growth forests. Fungal Ecol 27:145–154. CrossRefGoogle Scholar
  12. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996e998CrossRefGoogle Scholar
  13. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fleischer P (2008) Windfall research and monitoring in the high Tatra Mts, objectives, principles, methods and current status. Contrib Geophys Geodesy 38(3):233–248Google Scholar
  15. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. Mol Ecol 2(2):113–118. CrossRefPubMedGoogle Scholar
  16. Glassman SI, Levine CR, DiRocco AM, Battles JJ, Bruns TD (2016) Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot. ISME J 10(5):1228–1239. CrossRefPubMedGoogle Scholar
  17. Gömöryová E, Střelcová K, Fleischer P, Gömöry D (2011) Soil microbial characteristics at the monitoring plots on windthrow areas of the Tatra National Park (Slovakia): their assessment as environmental indicators. Environ Monit Assess 174(1):31–45. CrossRefPubMedGoogle Scholar
  18. Hartmann M, Niklaus PA, Zimmermann S, Schmutz S, Kremer J, Abarenkov K, Lüscher P, Widmer F, Frey B (2014) Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J 8(1):226–244CrossRefPubMedGoogle Scholar
  19. Hußlein M, Kiener H, Křenová Z, Šolar M (2009) EUROPE’S WILD HEART, conference report January 2009, Srní, Czech Republic, ISBN: 3-930977-33-8Google Scholar
  20. Jones MD, Durall DM, Cairney JW (2003) Ectomycorrhizal fungal communities in young forest stands regenerating after clearcut logging. New Phytol 157(3):399–422. CrossRefGoogle Scholar
  21. Nicholson BA, Jones MD (2017) Early-successional ectomycorrhizal fungi effectively support extracellular enzyme activities and seedling nitrogen accumulation in mature forests. Mycorrhiza 27(3):247–260. CrossRefPubMedGoogle Scholar
  22. Kataja-aho S, Pennanen T, Lensu A, Haimi J (2012) Does stump removal affect early growth and mycorrhizal infection of spruce (Picea Abies) seedlings in clear-cuts? Scand J For Res 27(8):746–753CrossRefGoogle Scholar
  23. Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol 537:39–64. CrossRefPubMedGoogle Scholar
  24. Knudsen H, Vesterholt J (2012) Funga Nordica. Agaricoid, boletoid, calavarioid, cyphelloid and gastroid genera. Nordsvamp, Copenhagen. 1083 pGoogle Scholar
  25. Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F et al (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47(4):410–415. CrossRefPubMedGoogle Scholar
  26. Kõljalg U (1995) Tomentella (Basidiomycota) and related genera in temperate Eurasia. Synopsis Fungorum 9, Fungiflora, Oslo. 213 pGoogle Scholar
  27. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23(21):2947–2948. CrossRefPubMedGoogle Scholar
  28. Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high-throughput sequencing of amplified markers-a user ‘s guide. New Phytol 199(1):288–299. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mariotte P (2014) Do subordinate species punch above their weight? Evidence from above-and below-ground. New Phytol 203(1):16–21. CrossRefPubMedGoogle Scholar
  30. Menkis A, Uotila A, Arhipova N, Vasaitis R (2010) Effects of stump and slash removal on growth and mycorrhization of Picea Abies seedlings outplanted on a forest clear-cut. Mycorrhiza 20(7):505–509. CrossRefPubMedGoogle Scholar
  31. Michalová Z, Morrissey RC, Wohlgemuth T, Bače R, Fleischer P, Svoboda M (2017) Salvage-logging after windstorm leads to structural and functional homogenization of understory layer and delayed spruce tree recovery in Tatra Mts., Slovakia. Forests 8(3):88. CrossRefGoogle Scholar
  32. Nguyen NH, Smith D, Peay K, Kennedy P (2015) Parsing ecological signal from noise in next generation amplicon sequencing. New Phytol 205(4):1389–1393. CrossRefPubMedGoogle Scholar
  33. Nikolcheva LG, Bärlocher F (2004) Taxon-specific fungal primers reveal unexpectedly high diversity during leaf decomposition in a stream. Mycol Prog 3(1):41–49. CrossRefGoogle Scholar
  34. Pickles BJ, Pither J (2014) Still scratching the surface: how much of the “black box” of soil ectomycorrhizal communities remains in the dark? New Phytol 201(4):1101–1105. CrossRefPubMedGoogle Scholar
  35. R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL
  36. Rincón A, Santamaría BP, Ocaña L, Verdú M (2014) Structure and phylogenetic diversity of post-fire ectomycorrhizal communities of maritime pine. Mycorrhiza 24(2):131–141. CrossRefPubMedGoogle Scholar
  37. Seidl R, Schelhass MJ, Lexer MJ (2011) Unraveling the drivers of intensifying forest disturbance regimes in Europe. Glob Chang Biol 17(9):2842–2852. CrossRefGoogle Scholar
  38. Smith AJ, Potvin LR, Lilleskov EA (2015) Fertility-dependent effects of ectomycorrhizal fungal communities on white spruce seedling nutrition. Mycorrhiza 25(8):649–662. CrossRefPubMedGoogle Scholar
  39. Spake R, van der Linde S, Newton AC, Suz LM, Bidartondo MI, Doncaster CP (2016) Similar biodiversity of ectomycorrhizal fungi in set-aside plantations and ancient old-growth broadleaved forests. Biol Conserv 194:71–79. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Štursová M, Šnajdr J, Cajthaml T, Bárta J, Šantrůčková H, Baldrian P (2014) When the forest dies: the response of forest soil fungi to a bark beetle-induced tree dieback. ISME I 8(9):1920–1931. CrossRefGoogle Scholar
  41. Taylor AFS (2002) Fungal diversity in ectomycorrhizal communities: sampling effort and species detection. Plant Soil 244(1/2):19–28. CrossRefGoogle Scholar
  42. Taudière A, Richard F, Carcaillet C (2017) Review on fire effects on ectomycorrhizal symbiosis, an unachieved work for a scalding topic. Forest Ecol Manag 391:446–457. CrossRefGoogle Scholar
  43. Tedersoo L, Bahram M, Toots M, Diedhiou AG, Henkel TW, Kjøller R, Morris MH, Nara K, Nouhra E, Peay KG, Põlme S, Ryberg M, Smith ME, Kõljalg U (2012) Towards global patterns in the diversity and community structure of ectomycorrhizal fungi. Mol Ecol 21(17):4160–4170. CrossRefPubMedGoogle Scholar
  44. Tedersoo L, Smith ME (2013) Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biol Rev 27(3-4):83–99. CrossRefGoogle Scholar
  45. Ter Braak CJF, Šmilauer P (2012) Canoco reference manual and user’s guide: software for ordination (version 5.0). Microcomputer power, Ithaca, NY, USAGoogle Scholar
  46. Vašutová M, Edwards-Jonášová M, Baldrian P, Čermák M, Cudlín P (2017) Distinct environmental variables drive the community composition of mycorrhizal and saprotrophic fungi at the alpine treeline ecotone. Fungal Ecol 27:116–124. CrossRefGoogle Scholar
  47. Větrovský T, Baldrian P (2013) Analysis of soil fungal communities by amplicon pyrosequencing: current approaches to data analysis and the introduction of the pipeline SEED. Biol Fert Soils 49(8):1027–1037. CrossRefGoogle Scholar
  48. Visser S, Parkinson D (1999) Wildfire vs. clearcutting: impacts on ectomycorrhizal and decomposer fungi. In: Meurisse RT, Ypsilantis WG, Seybold C (Eds.), Proceedings, Pacific northwest forest and rangeland soil organism symposium; 1998 March 17-19; Corvallis, Portland. USDA Forest Service, Pacific northwest Research Station, general technical report PNW-GTR-461, pp. 114–123Google Scholar
  49. Vohník M, Mrnka L, Lukešová T, Bruzone MC, Kohout P, Fehrer J (2013) The cultivable endophytic community of Norway spruce ectomycorrhizas from microhabitats lacking ericaceous hosts is dominated by ericoid mycorrhizal Meliniomyces variabilis. Fungal Ecol 6(4):281–292. CrossRefGoogle Scholar
  50. Walker JKM, Ward V, Paterson C, Jones MD (2012) Coarse woody debris retention in subalpine clearcuts affects ectomycorrhizal root tip community structure within fifteen years of harvest. Appl Soil Ecol 60:5–15. CrossRefGoogle Scholar
  51. Walker JK, Ward V, Jones MD (2016) Ectomycorrhizal fungal exoenzyme activity differs on spruce seedlings planted in forests versus clearcuts. Trees 30(2):497–508. CrossRefGoogle Scholar
  52. Wermelinger B (2004) Ecology and management of the spruce bark beetle Ips typographus — a review of recent research. Forest Ecol. Manag. 202(1):67–82. CrossRefGoogle Scholar
  53. White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, (eds) PCR Protocols: a guide to methods and applications, San Diego: Academic Press, p. 315–322Google Scholar
  54. Yamamoto K, Degawa Y, Hirose D, Fukuda M, Yamada A (2015) Morphology and phylogeny of four Endogone species and Sphaerocreas pubescens collected in Japan. Mycol Prog 14(10):86. CrossRefGoogle Scholar
  55. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, 574 p.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Botany, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Global Change Research InstituteCzech Academy of SciencesČeské BudějoviceCzech Republic
  3. 3.Faculty of ForestryTechnical University in ZvolenZvolenSlovakia
  4. 4.Research Station of TANAP, State Forest of TANAPTatranská LomnicaSlovakia

Personalised recommendations