Skip to main content
Log in

Arbuscular mycorrhizal fungus responses to disturbance are context-dependent

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Anthropogenic disturbance is one of the most important forces shaping soil ecosystems. While organisms that live in the soil, such as arbuscular mycorrhizal (AM) fungi, are sensitive to disturbance, their response is not always predictable. Given the range of disturbance types and differences among AM fungi in their growth strategies, the unpredictability of the responses of AM fungi to disturbance is not surprising. We investigated the role of disturbance type (i.e., soil disruption, agriculture, host perturbation, and chemical disturbance) and fungus identity on disturbance response in the AM symbiosis. Using meta-analysis, we found evidence for differential disturbance response among AM fungal species, as well as evidence that particular fungal species are especially susceptible to certain disturbance types, perhaps because of their life history strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Avio L, Castaldini M, Fabiani A, Bedini S, Sbrana C, Turrini A, Giovannetti M (2013) Impact of nitrogen fertilization and soil tillage on arbuscular mycorrhizal fungal communities in a Mediterranean agroecosystem. Soil Biol and Biochem 67:285–294

    Article  CAS  Google Scholar 

  • Barto EK, Rillig MC (2010) Does herbivory really suppress mycorrhiza? A meta-analysis. J Ecol 98(4):745–753

    Article  Google Scholar 

  • Berga M, Szekely AJ, Langenheder S (2012) Effects of disturbance intensity and frequency on bacterial community composition and function. PLoS One 7(5):1–11

    Article  Google Scholar 

  • Biermann B, Linderman RG (1983) Use of vesicular-arbuscular mycorrhizal roots, intraradical vesicles and extraradical vesicles as inoculum. New Phytol 95(1):97–105

    Article  Google Scholar 

  • Boerner REJ, DeMars BG, Leicht PN (1996) Spatial patterns of mycorrhizal infectiveness of soils long a successional chronosequence. Mycorrhiza 6(2):79–90

    Article  Google Scholar 

  • Borriello R, Lumini E, Girlanda M, Bonfante P, Bianciotto V (2012) Effects of different management practices on arbuscular mycorrhizal fungal diversity in maize fields by a molecular approach. Biol and Fert of Soils 48:911–922

    Article  Google Scholar 

  • Brundrett MC, Ashwath N (2013) Glomeromycotan mycorrhizal fungi from tropical Australia III. Measuring diversity in natural and disturbed habitats. Plant Soil 370(1–2):419–433

    Article  CAS  Google Scholar 

  • Brundrett MC, Jasper DA, Ashwath N (1999) Glomalean mycorrhizal fungi from tropical Australia: II. The effect of nutrient levels and host species on the isolation of fungi. Mycorrhiza 8(6):315–321

    Article  Google Scholar 

  • Chagnon P-L, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Tr in Plnt Sci 18(9):484–491

    Article  CAS  Google Scholar 

  • Clark RB (1997) Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant Soil 192(1):15–22

    Article  CAS  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science 199:1302–1310

    Article  CAS  PubMed  Google Scholar 

  • Davison J, Öpik M, Daniell TJ, Moora M, Zobel M (2011) Arbuscular mycorrhizal fungal communities in plant roots are not random assemblages. FEMS Microbio Ecol 78(1):103–115

    Article  CAS  Google Scholar 

  • de la Providenicia IE, de Souza FA, Fernandez F, Delmas NS, Declerck S (2005) Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis and hyphal formation mechanisms healing between different phylogenic groups. New Phytol 165(1):261–271

    Article  Google Scholar 

  • de Souza FA, Dalpe Y, Declerck S, de la Provedencia IE, Sejalon-Delmas N (2005) Life history strategies in Gigasporaceae: insight from monoxenic culture. In: Declerck S, Strullu DG, Fortin A (eds) Soil biology, vol 4. Spriner, Berlin Heidelberg

    Google Scholar 

  • Declerck S, D’Or D, Bivort C, de Souza FA (2004) Development of extraradical mycelium of Scutellospora reticulata under root-organ culture: spore production and function of auxiliary cells. Mycol Rsch 108:84–92

    Article  Google Scholar 

  • Deorr TB, Redente EF, Reeves FB (1984) Effects of soil disturbance on plant succession and levels of mycorrhizal fungi in a sagebrush-grassland community. J of Rnge Mgmt 37(2):135–139

    Article  Google Scholar 

  • Douds DD, Galvez L, Janke RR, Wagoner P (1995) Effect of tillage and farming system upon populations and distribution of vesicular-arbuscular mycorrhizal fungi. Agri, Ecosys and Env 52:111–118

    Article  Google Scholar 

  • Estaun MV (1989) Effect of sodium chloride and mannitol on germination and hyphal growth of the vesiculararbuscular mycorrhizal fungus Glomus mossae. Agric Ecosyst Environ 29:123–129

    Article  Google Scholar 

  • Evans DG, Miller MH (1988) Vesicular-arbuscular mycorrhizas and the soil-disturbance-induced reduction of nutrient absorption in maize. I. Causal relations. New Phytol 110:67–74

    Article  Google Scholar 

  • Evans DG, Miller MH (1990) The role of the external mycelial network in the effect of soil disturbance upon vesicular—arbuscular mycorrhizal colonization of maize. New Phytol 114:65–71

    Article  Google Scholar 

  • FAO (2011) The state of the world’s land and water resources for food and agriculture, managing systems at risk. Food and Agriculture Organization of the United Nations, Rome and Earthscan, London

  • Fichtner A, von Oheimb G, Hardtle W, Wilken C, Gutknecht JLM (2014) Effects of anthropogenic disturbances on soil microbial communities in oak forests persist for more than 100 Years. Soil Biol and Biochem 70:79–87

    Article  CAS  Google Scholar 

  • Fitter AH (2005) Darkness visible: reflections on underground ecology. J of Ecol 93:231–243

    Article  Google Scholar 

  • Gehring CA, Whitham TG (2002) Mycorrhiza-herbivore interactions: population and community consequences. In: Van Der Heijden M, Sanders I (eds) Mycorrhizal Ecology. Springer, New York, pp 295–320

    Chapter  Google Scholar 

  • Guadarrama P, Castillo S, Ramos-Zapata JA, Hernández-Cuevas LV, Camargo-Ricalde SL (2014) Arbuscular mycorrhizal fungal communities in changing environments: the effects of seasonality and anthropogenic disturbance in a seasonal dry forest. Pedobiologia 57(2):87–95

    Article  Google Scholar 

  • Hart MM, Reader RJ (2002a) Host plant benefit from association with arbuscular mycorrhizal fungi: variation due to differences in size of mycelium. Biol and Fert of Soils 36(5):357–366

    Article  Google Scholar 

  • Hart MM, Reader RJ (2002b) Does percent root length colonization and soil hyphal length reflect the extent of colonization for all AMF? Mycorrhiza 12(6):297–301

    Article  PubMed  Google Scholar 

  • Hart MM, Reader RJ (2002c) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153(2):335–344

    Article  Google Scholar 

  • Hart MM, Reader RJ (2004) Do arbuscular mycorrhizal fungi recover from soil disturbance differently? Trop Ecol 45(1):97–111

    Google Scholar 

  • Hart MM, Reader RJ (2005) The role of the external mycelium in early colonization for three arbuscular mycorrhizal fungal species with different colonization strategies. Pedobiologia 49(3):269–279

    Article  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JP (1998) Ploughing up the wood-wide web? Nature 394(6692):431

    Article  CAS  PubMed  Google Scholar 

  • Hokka V, Mikola J, Vestberg M, Setälä H (2004) Interactive effects of defoliation and an AM fungus on plants and soil organisms in experimental legume-grass communities. Oikos 106(1):73–84

    Article  CAS  Google Scholar 

  • Huston MA (1994) Biological diversity. Cambridge University Press

  • Jansa J, Mozafar A, Anken T, Ruh R, Sanders IR, Frossard E (2002) Diversity and structure of AMF communities as affected by tillage in a temperate soil. Mycorrhiza 12(5):225–234

    Article  CAS  PubMed  Google Scholar 

  • Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard E (2003) Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13(4):1164–1176

    Article  Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2005) Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. Plant Soil 276(1–2):163–176

    Article  CAS  Google Scholar 

  • Jansa J, Wiemken A, Frossard E (2006) The effects of agricultural practices on arbuscular mycorrhizal fungi. Geol Soc, London, Spec Pub 266(1):89–115

    Article  Google Scholar 

  • Jasper DA, Robson AD, Abbot LK (1989) Soil disturbance hyphae of reduces the infectivity of external hyphae of vesicular-arbuscular mycorrhizal fungi. New Phytol 112(1):93–99

    Article  Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1991) The effect of soil disturbance on vesicular-arbuscular mycorrhizal fungi in soils from different vegetation types. New Phytol 118(3):471–476

    Article  Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1993) The survival of infective hyphae of vesicular-arbuscular mycorrhizal fungi in dry soil: an interaction with sporulation. New Phytol 124:473–479

    Article  Google Scholar 

  • Johnson NC, Zak DR, Tilman D, Pfleger FL (1991) International association for ecology dynamics of vesicular-arbuscular mycorrhizae during old field succession. Oevologia 86(3):349–358

    Google Scholar 

  • Klironomos JN, Hart MM, Gurney JE, Moutoglis P (2001) Interspecific differences in the tolerance of arbuscular mycorrhizal fungi to freezing and drying. Can J of Bot 79(10):1161–1166

    Article  Google Scholar 

  • Knapp G, Hartung J (2003) Improved tests for a random effects meta-regression with a single covariate. Stat in Med 22:2693–2710

    Article  Google Scholar 

  • Koch AM, Kuhn G, Fontanillas P, Fumagalli L, Goudet J, Sanders IR (2004) High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi. Proc of the Nat Acad of Sci 101(8):2369–2374

    Article  CAS  Google Scholar 

  • Koch, AM, Antunes PM, Maherali H, Hart M, Klironomos J (2017) Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not predict host plant growth. New Phytologist: in press

  • Köhl L, Oehl F, van der Heijden MGA (2014) Agricultural practices indirectly influence plant productivity and ecosystem services through effects on soil biota. Ecol Appl 24(7):1842–1853

    Article  Google Scholar 

  • Lekberg Y, Schnoor TK, Kjøller R, Gibbons SM, Hansen LH, Al-Soud WA, Sørensen SJ, Rosendahl S (2012) 454-Sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. J of Ecol 100:151–160

    Article  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316(5832):1746–1748

    Article  CAS  PubMed  Google Scholar 

  • Mathimaran N, Ruh R, Vullioud P, Frossard E, Jansa J (2005) Glomus intraradices dominates arbuscular mycorrhizal communities in a heavy textured agricultural soil. Mycorrhiza 16(1):61–66

    Article  CAS  PubMed  Google Scholar 

  • McGonigle T, Miller M (1993) Responses of mycorrhizae and shoot phosphorus of maize to the frequency and timing of soil disturbance. Mycorrhiza 4:63–68

    Article  Google Scholar 

  • McGonigle T, Miller M (1996) Development of fungi below ground in association with plants growing in disturbed and undisturbed soils. Soil Biol Biochem 28:263–269

    Article  CAS  Google Scholar 

  • McGonigle T, Miller M (2000) The inconsistent effect of soil disturbance on colonization of roots by arbuscular mycorrhizal fungi: a test of the inoculum density hypothesis. Appl Soil Ecol 14:147–155

    Article  Google Scholar 

  • McIntyre S, Lavorel S, Tremont RM (1995) Plant life-history attributes : their relationship to disturbance. Ecol 83(1):31–44

    Article  Google Scholar 

  • McMillen BG, Juniper S, Abbott LK (1998) Inhibition of hyphal growth of a vesicular-arbuscular mycorrhizal fungus in soil containing sodium chloride limits the spread of infection from spores. Soil Biol Biochem 30(13):1639–1646

  • Moora M, Davison J, Opik M, Metsis M, Saks U, Jairus T, Vasar M, Zobel M (2014) Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. FEMS Microbiol Ecol 90(3):609–621

    Article  CAS  PubMed  Google Scholar 

  • Morton JB, Redecker D (2001) Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93(1):181–195

    Article  Google Scholar 

  • Munkvold L, Kjller R, Vestberg M, Rosendahl S (2004) Functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164(2):357–364

    Article  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from in the field root pathogenic fungi. J of Ecol 83(6):991–1000

    Article  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Wiemken A, Boller T (2009) Distinct sporulation dynamics of arbuscular mycorrhizal fungal communities from different agroecosystems in long-term microcosms. Agri, Ecosys & Env 134:257–268

    Article  Google Scholar 

  • Opik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier U, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188(1):223–241

    Article  CAS  PubMed  Google Scholar 

  • Peyret-Guzzon M, Stockinger H, Bouffaud ML, Farcy P, Wipf D, Redecker D (2016) Arbuscular mycorrhizal fungal communities and Rhizophagus irregularis populations shift in response to short-term ploughing and fertilisation in a buffer strip. Mycorrhiza 26(1):33–46

    Article  CAS  PubMed  Google Scholar 

  • Picone C (2006) Diversity and abundance of arbuscular-mycorrhizal fungus spores in tropical forest and pasture. Biotropica 32(4a):734–750

    Article  Google Scholar 

  • Porter WM, Robson AD, Abbott LK (1987) Field survey of the distribution of vesicular-arbuscular mycorrhizal fungi in relation to soil pH. J Appl Ecol 24(2):659

  • Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H (2009) Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc Biol Sci/The Roy Soc 276(1676):4237–4245

    Article  Google Scholar 

  • Pringle A, Bever JD (2002) Divergent Phenologies may facilitate the coexistence of arbuscular mycorrhizal fungi in a North Carolina grassland. Amer J of Bot 89(9):1439–1446

    Article  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Ropars J, Corradi N (2015) Homokaryotic vs heterokaryotic mycelium in arbuscular mycorrhizal fungi: different techniques, different results? New Phytol 208:638–641

    Article  PubMed  Google Scholar 

  • Rosendahl S, Matzen HB (2008) Genetic structure of arbuscular mycorrhizal populations in fallow and cultivated soils. New Phytol 179(4):1154–1161

    Article  PubMed  Google Scholar 

  • Rúa MA, Antonnika A, Antunes PM, Chaudhary BV, Gehring C, Lamity LJ, Piculell BJ, Bever JD, Zabinski C, Meadow JF, Laieunesse MJ, Milligan BG, Karst J, Hoeksema JD (2016) Home-field advantage? Evidence of local adaptation among plants, soil, and arbuscular mycorrhizal fungi through meta-analysis. BMC Evol Biol 16:122. doi:10.1186/s12862-016-0698-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Schnoor TK, Lekberg Y, Rosendahl S, Olsson PA (2011) Mechanical soil disturbance as a determinant of arbuscular mycorrhizal fungal communities in semi-natural grassland. Mycorrhiza 21(3):211–220

    Article  PubMed  Google Scholar 

  • Sharifi M, Ghorbanli M, Ebrahimzadeh H (2007) Improved growth of salinity-stressed soybean after inoculation with salt pre-treated mycorrhizal fungi. J Plant Physiol 164(9):1144–1151

  • Sharmah D, Jha DK (2014) Diversity of arbuscular mycorrhizal fungi in disturbed and undisturbed forests of Karbi Anglong Hills of Assam, India. Agri Rsch 3:229–238

    Article  Google Scholar 

  • Sikes BA, Cottenie K, Klironomos JN (2009) Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J of Ecol 97(6):1274–1280

    Article  Google Scholar 

  • Soteras F, Grilli G, Cofré MN, Marro N, Becerra A (2015) Arbuscular mycorrhizal fungal composition in high montane forests with different disturbance histories in Central Argentina. Appl Soil Ecol 85:30–37

    Article  Google Scholar 

  • Staddon PL, Ramsey CB, Ostle N, Ineson P, Fitter AH (2003) Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science 300(5622):1138–1140

    Article  CAS  PubMed  Google Scholar 

  • Stahl PD, Williams SE, Christensen M (1988) Efficacy of native vesicular-arbuscular mycorrhizal fungi after severe soil disturbance. New Phytol 110:347–354

    Article  Google Scholar 

  • Stover HJ, Thorn RG, Bowles JM, Bernards MA, Jacobs CR (2012) Arbuscular mycorrhizal fungi and vascular plant species abundance and community structure in tallgrass prairies with varying agricultural disturbance histories. Appl Soil Ecol 60:61–70

    Article  Google Scholar 

  • Tommerup IC (1983) Temperature relations of spore germination and hyphal growth of vesicular-arbuscular mycorrhizal fungi in soil. Trans of the Brit Mycol Soc 81(2):381–387

    Article  Google Scholar 

  • Torrecillas E, Alguacil MM, Roldan A (2012) Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies. Appl Environ Microbiol 78(17):6180–6186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treseder KK (2004) A meta-analysis of mycorrhizal responses to nitrogen, phosphorous, and atmospheric CO2 in field studies. New Phytol 164:347–355

  • Treseder KK, Mack MC, Cross A (2004) Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecol Appl 14(6):1826–1838

    Article  Google Scholar 

  • Uibopuu A, Moora M, Saks Ü, Daniell T, Zobel M, Öpik M (2009) Differential effect of arbuscular mycorrhizal fungal communities from ecosystems along management gradient on the growth of forest understorey plant species. Soil Biol Biochem 41(10):2141–2146

    Article  CAS  Google Scholar 

  • Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11(8):1555–1564

    Article  CAS  PubMed  Google Scholar 

  • Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J of Stat Softw 36(3):1–48

    Article  Google Scholar 

  • Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem Multifunctionality. Proc of the Nat Acad of Sci of the USA 111(14):5266–5270

    Article  CAS  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

  • Wetzel K, Silva G, Matczinski U, Oehl F, Fester T (2014) Superior differentiation of arbuscular mycorrhizal fungal communities from till and no-till plots by morphological spore identification when compared to T-RFLP. Soil Biol and Biochem 72:88–96

    Article  CAS  Google Scholar 

  • Wright SF, Starr JL, Paltineanu IC (1999) Changes in aggregate stability and concentration of glomalin during tillage management transition. Soil Sci Soc of Am J 63(6):1825

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MMH was funded by an NSERC Discovery Grant as well as a Gledden Fellowship through the Institute of Advanced Studies at The University of Western Australia. Thanks to Kristin Aleklett for helping with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miranda Hart.

Electronic supplementary material

ESM 1

(DOCX 25 kb)

ESM 2

(TXT 256 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Heyde, M., Ohsowski, B., Abbott, L.K. et al. Arbuscular mycorrhizal fungus responses to disturbance are context-dependent. Mycorrhiza 27, 431–440 (2017). https://doi.org/10.1007/s00572-016-0759-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-016-0759-3

Key words

Navigation