Advertisement

Mycorrhiza

, Volume 27, Issue 4, pp 383–396 | Cite as

Comparative genomics and expression levels of hydrophobins from eight mycorrhizal genomes

  • F. Rineau
  • H. Lmalem
  • D. Ahren
  • F. Shah
  • T. Johansson
  • L. Coninx
  • J. Ruytinx
  • H. Nguyen
  • I. Grigoriev
  • A. Kuo
  • A. Kohler
  • E. Morin
  • J. Vangronsveld
  • F. Martin
  • J. V. Colpaert
Original Article

Abstract

Hydrophobins are small secreted proteins that are present as several gene copies in most fungal genomes. Their properties are now well understood: they are amphiphilic and assemble at hydrophilic/hydrophobic interfaces. However, their physiological functions remain largely unexplored, especially within mycorrhizal fungi. In this study, we identified hydrophobin genes and analysed their distribution in eight mycorrhizal genomes. We then measured their expression levels in three different biological conditions (mycorrhizal tissue vs. free-living mycelium, organic vs. mineral growth medium and aerial vs. submerged growth). Results confirmed that the size of the hydrophobin repertoire increased in the terminal orders of the fungal evolutionary tree. Reconciliation analysis predicted that in 41% of the cases, hydrophobins evolved from duplication events. Whatever the treatment and the fungal species, the pattern of expression of hydrophobins followed a reciprocal function, with one gene much more expressed than others from the same repertoire. These most-expressed hydrophobin genes were also among the most expressed of the whole genome, which suggests that they play a role as structural proteins. The fine-tuning of the expression of hydrophobin genes in each condition appeared complex because it differed considerably between species, in a way that could not be explained by simple ecological traits. Hydrophobin gene regulation in mycorrhizal tissue as compared with free-living mycelium, however, was significantly associated with a calculated high exposure of hydrophilic residues.

Keywords

Comparative genomics Hydrophobins Mycorrhizas Small secreted proteins 

Notes

Acknowledgements

The authors are thankful to the Mycorrhizal Genomics Initiative for providing access to genomic and transcriptomic data. Hafida Lmalem and Francois Rineau are grateful to the BOF (Special Research Fund) from Hasselt University for financing their research. The authors also thank Tom Artois, Anders Tunlid and Michiel Op De Beeck for useful comments on the manuscript.

Supplementary material

572_2016_758_MOESM1_ESM.docx (748 kb)
ESM 1 (DOCX 748 kb)

References

  1. Agerer R (2001) Exploration types of ectomycorrhizae. Mycorrhiza 11:107–114CrossRefGoogle Scholar
  2. Ando A, Harada A, Miura K, Tamai Y (2001) A gene encoding a hydrophobin, fvh1, is specifically expressed after the induction of fruiting in the edible mushroom Flammulina velutipes. Curr Genet 39:190–197CrossRefPubMedGoogle Scholar
  3. Asgeirdottir SA, de Vries OMH, Wessels JGH (1998) Identification of three differentially expressed hydrophobins in Pleurotus ostreatus (oyster mushroom). Microbiology 144:2961–2969CrossRefGoogle Scholar
  4. de Groot PW, Schaap PJ, Sonnenberg ASM, Visser J, Van Griensven JLD (1996) The Agaricus bisporus hypA gene encodes a hydrophobin and specifically accumulates in peel tissue of mushroom caps during fruit body development. J Mol Biol 257:1008–1018CrossRefPubMedGoogle Scholar
  5. de Vocht ML, Scholtmeijer K, van der Vegte EW, de Vries OMH, Sonveaux N, Wösten HAB, Ruysschaert JM, Hadziioannou G, Wessels JGH, Robillard GT (1998) Structural characterization of the hydrophobin SC3, as a monomer and after self-assembly at hydrophobic/hydrophilic interfaces. Biophys Journal 74:2059–2069CrossRefGoogle Scholar
  6. Dyer PS (2002) Hydrophobins in the lichen symbiosis. New Phytol 154(1):1–4Google Scholar
  7. He Z, Zhang H, Gao S, Lercher MJ, Chen WH, Hu S (2016) Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Res 44(W1):W236–W241. doi: 10.1093/nar/gkw370 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Ihaka R, Gentleman R (1996) R: A language for data analysis and graphics. J Comput Graph Stat 5(3):299–314Google Scholar
  9. Källberg M, Margaryan G, Wang S, Ma J, Xu J (2012) RaptorX server: a resource for template-based protein structure modeling. Methods Mol Biol 1137:17–27CrossRefGoogle Scholar
  10. Karlsson M, Stenlid J, Olson A (2007) Two hydrophobin genes from the conifer pathogen Heterobasidion annosum are expressed in aerial hyphae. Mycologia 99:227–231CrossRefPubMedGoogle Scholar
  11. Kelley L, Sternberg MJE (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371CrossRefPubMedGoogle Scholar
  12. Kershaw MJ, Talbot NJ (1998) Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis. Fungal Genet Biol 23(1):18–33. doi: 10.1006/fgbi.1997.1022
  13. Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canback B, Choi C, Cichocki N, Clum A, Colpaert J, Copeland A, Costa MD, Dore J, Floudas D, Gay G, Girlanda M, Henrissat B, Herrmann S, Hess J, Hogberg N, Johansson T, Khouja HR, LaButti K, Lahrmann U, Levasseur A, Lindquist EA, Lipzen A, Marmeisse R, Martino E, Murat C, Ngan CY, Nehls U, Plett JM, Pringle A, Ohm R, Perotto S, Riley R, Rineau F, Ruytinx J, Salamov A, Shah F, Sun H, Tarkka M, Tritt A, Veneault-Fourrey C, Zuccaro A, Mycorrhizal Genomics Initiative Consortium, Tunlid A, Grigoriev IV, Hibbett DS, Martin F (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–415CrossRefPubMedGoogle Scholar
  14. Konagurthu AS, Whisstock JC, Stuckey PJ, Lesk AM (2006) Proteins 64:559–574CrossRefPubMedGoogle Scholar
  15. Kwan AHY, Winefield RD, Sunde M, Matthews JM, Haverkamp RG, Templeton MD, Mackay JP (2006) Structural basis for rodlet assembly in fungal hydrophobins. PNAS 103:3621–3626CrossRefPubMedPubMedCentralGoogle Scholar
  16. Lienemann M, Gandier JA, Joensuu JJ, Iwanaga A, Takatsuji Y, Haruyama T, Master E, Tenkanen M, Linder MB (2013) Structure-function relationships in hydrophobins: probing the role of charged side chains. Appl Env Microbiol 79:5533–5538CrossRefGoogle Scholar
  17. Linder MB, Szilvay GR, Nakari-Setälä T, Penttila ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896CrossRefPubMedGoogle Scholar
  18. Lugones LG, Wosten HAB, Wessels JGH (1998) A hydrophobin (ABH3) specifically secreted by vegetatively growing hyphae of Agaricus bisporus (common white button mushroom). Microbiology 144:2345–2353CrossRefPubMedGoogle Scholar
  19. Lugones LG, Wösten H a B, Birkenkamp KU, Sjollema K a, Zagers J, Wessels JGH (1999) Hydrophobins line air channels in fruiting bodies of Schizophyllum commune and Agaricus bisporus. Mycol Res 103(5):635–640. doi: 10.1017/S0953756298007552 CrossRefGoogle Scholar
  20. Macindoe I, Kwan AH, Ren Q, Morris VK, Yang W, Mackay JP, Sunde M (2012) Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS. Proc Natl Acad Sci U S A 109(14):E804–E811. doi: 10.1073/pnas.1114052109 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Mackay JP, Matthews JM, Winefield RD, Mackay LG, Haverkamp LG, Templeton MD (2001) The hydrophobin EAS is largely unstructured in solution and functions by forming amyloid-like structures. Structure 9:83–91CrossRefPubMedGoogle Scholar
  22. Mankel A, Krause K, Kothe E (2002) Identification of a hydrophobin gene that is developmentally regulated in the ectomycorrhizal fungus Tricholoma terreum. Appl Environ Microbiol 68(3):1408–1413. doi: 10.1128/AEM.68.3.1408-1413.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Martin F, Aerts A, Ahren D, Brun A, Danchin EG, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buee M, Brokstein P, Canback B, Cohen D, Courty PE, Coutinho PM, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger PJ, Jain P, Kilaru S, Labbe J, Lin YC, Legue V, Le TF, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq MP, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kues U, Lucas S, Van de PY, Podila GK, Polle A, Pukkila PJ, Richardson PM, Rouze P, Sanders IR, Stajich JE, Tunlid A, Tuskan G, Grigoriev IV (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92CrossRefPubMedGoogle Scholar
  24. Maurer-Stroh S, Debulpaep M, Kuemmerer N, Lopez de la Paz M, Martins IC, Reumers J, Morris KL, Copland A, Serpell L, Serrano L, Schymkowitz JW, Rousseau F (2010) Exploring the sequence determinants fo amyloid structure using position-specific scoring matrices. Nat Methods 7:237–242CrossRefPubMedGoogle Scholar
  25. Mc Indoe I, Kwan AH, Ren Q, Morris VK, Yang W, Mackay JP, Sunde M (2012) Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS. PNAS 109:E804–E811CrossRefGoogle Scholar
  26. Mgbeahuruike AC, Kovalchuk A, Chen H, Ubhayasekera W, Asiegbu FO (2013) Evolutionary analysis of hydrophobin gene family in two wood-degrading basidiomycetes, Phlebia brevispora and Heterobasidion annosum s.l. BMC Evol Biol 13:240–256CrossRefPubMedPubMedCentralGoogle Scholar
  27. Penas MM, Rust B, Larraya L, Rairez L, Pisabarro AG (2002) Differentially regulated, vegetative-mycelium-specific hydrophobins of the edible basidiomycete Pleurotus ostreatus. Appl Environ Microbiol 68:3891–3898CrossRefPubMedPubMedCentralGoogle Scholar
  28. Petersen B, Petersen TN, Andersen P, Nielsen M, Lundegaard C (2009) A generic method for assignment of reliability scores applied to solvent accessibility predictions. BMC Struct Biol 9:51CrossRefPubMedPubMedCentralGoogle Scholar
  29. Plett JM, Gibon J, Kohler A, Duffy K, Hoegger PJ, Velagapudi R, Han J, Kües U, Grigoriev IV, Martin F (2012) Phylogenetic, genomic organization and expression analysis of hydrophobin genes in the ectomycorrhizal basidiomycete Laccaria bicolor. Fung Gen Biol 49:199–209CrossRefGoogle Scholar
  30. Raudaskoski M, Kothe E (2015) Novel findings on the role of signal exchange in arbuscular and ectomycorrhizal symbioses. Mycorrhiza 25(4):243–252. doi: 10.1007/s00572-014-0607-2 CrossRefPubMedGoogle Scholar
  31. Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. Env Microbiol 3:229–236CrossRefGoogle Scholar
  32. Shah F, Rineau F, Canback B, Johansson T, Tunlid A (2013) The molecular components of the extracellular protein-degradation pathways of the ectomycorrhizal fungus Paxillus involutus. New Phytol 200(3):875–887Google Scholar
  33. Shah F, Nicolas C, Bentzer J, Ellström M, Smits M, Rineau F, Canbäck B, Carleer R, Lackner G, Braesel J, Hoffmeister D, Henrissat B, Hibbett DS, Martin F, Ahrén D, Johansson T, Persson P, Tunlid A (2016) Ectomycorrhizal fungi decompose humus-rich litter material using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol 209:1705–1719CrossRefPubMedGoogle Scholar
  34. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web-servers. Syst Biol 75:758–771CrossRefGoogle Scholar
  35. Stolzer M, Lai H, Xu M, Sathay D, Vernot B, Durand D (2012) Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinformatics 28:409–415. doi: 10.1093/bioinformatics/bts386 CrossRefGoogle Scholar
  36. Tagu T, Nasse B, Martin F (1996) Cloning and characterization of hydrophobins-encoding cDNAs from the ectomycorrhizal Basidiomycete Pisolithus tinctorius. Gene 168:93–97CrossRefPubMedGoogle Scholar
  37. Tagu D, Kottke I, Martin FM (1998) Hydrophobins in ectomycorrhizal symbiosis: hypothesis. Symbiosis 25:5–18Google Scholar
  38. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599 (Publication PDF at http://www.kumarlab.net/publications)CrossRefPubMedGoogle Scholar
  39. Tartaglia G, Vendruscolo M (2008) The Zyggregator method for predicting protein aggregation propensities. Chem Soc Rev 37:1395–1401CrossRefPubMedGoogle Scholar
  40. Tasaki Y, Ohata K, Hara T, Joh T (2004) Three genes specifically expressed during phosphate deficiency in Pholiota nameko strain N2 encode hydrophobins. Curr Genet 45:19–27CrossRefPubMedGoogle Scholar
  41. Trembley ML, Ringli C, Honegger R (2007) Differential expression of hydrophobins DGH1 , DGH2 and DGH3 and immunolocalization of DGHI in strata of the lichenized basidiocarp of Dictyonema glabratum. New Phytol 154(1):185–195Google Scholar
  42. Wessels JGH (2000) Hydrophobins, unique fungal proteins. Mycologist 14:153–159CrossRefGoogle Scholar
  43. Wessels JGH, de Vries OMH, Ásgeirsdóttir SA, Schuren FHJ (1991) Hydrophobin genes involved in formaiton of aerial hyphae and fruit bodies in Schizophyllum. Plant Cell 3:793–799CrossRefPubMedPubMedCentralGoogle Scholar
  44. Whiteford JR, Spanu PD (2002) Hydrophobins and the interactions between fungi and plants. Mol Plant Patho 3:391–400CrossRefGoogle Scholar
  45. Wösten HAB, de Vocht ML (2000) Hydrophobins, the fungal coat unravelled. Biochim Biophys Acta 1469:79–86CrossRefPubMedGoogle Scholar
  46. Wösten HA, Schuren FH, Wessels JG (1994) Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfaces. EMBO J 13(24):5848–5854Google Scholar
  47. Wosten HA, Bohlmann R, Eckerskorn C, Lottspeich F, Bolker M, Kahmann R (1996) A novel class of small amphipathic peptides affect aerial hyphal growth and surface hydrophobicity in Ustilago maydis. EMBO J 15(16):4274–4281 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8861956\nhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC452153/pdf/emboj00016-0196.pdfPubMedPubMedCentralGoogle Scholar
  48. Wösten HAB, van Wetter MA, Lugones LG, van der Mei HC, Busscher HJ, Wessels JGH (1999) How a fungus escapes the water to grow into the air. Curr Biol 9:85–89CrossRefPubMedGoogle Scholar
  49. Xu D, Zhang Y (2013) Ab initio structure prediction for Escherichia coli: towards genome-wide protein structure modeling and fold assignment. Sci Rep 3:1895CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • F. Rineau
    • 1
  • H. Lmalem
    • 1
  • D. Ahren
    • 2
  • F. Shah
    • 3
  • T. Johansson
    • 2
  • L. Coninx
    • 1
  • J. Ruytinx
    • 1
  • H. Nguyen
    • 1
  • I. Grigoriev
    • 4
  • A. Kuo
    • 4
  • A. Kohler
    • 5
    • 6
  • E. Morin
    • 5
    • 6
  • J. Vangronsveld
    • 1
  • F. Martin
    • 5
    • 6
  • J. V. Colpaert
    • 1
  1. 1.Centre for Environmental Sciences, Environmental Biology groupUHasseltHasseltBelgium
  2. 2.Department of Biology, Microbial Ecology GroupLund UniversityLundSweden
  3. 3.Department of food and environmental sciencesUniversity of HelsinkiHelsinkiFinland
  4. 4.US Department of Energy Joint Genome Institute (JGI)Walnut CreekUSA
  5. 5.Laboratory of Excellence Advanced Research on the Biology of Tree and Forest Ecosystems (ARBRE)Institut National de la Recherche Agronomique (INRA)ChampenouxFrance
  6. 6.Laboratory of Excellence ARBREUniversity of LorraineChampenouxFrance

Personalised recommendations