Mycorrhiza

, Volume 27, Issue 3, pp 225–232 | Cite as

Are there keystone mycorrhizal fungi associated to tropical epiphytic orchids?

  • Stefania Cevallos
  • Aminael Sánchez-Rodríguez
  • Cony Decock
  • Stéphane Declerck
  • Juan Pablo Suárez
Original Article

Abstract

In epiphytic orchids, distinctive groups of fungi are involved in the symbiotic association. However, little is known about the factors that determine the mycorrhizal community structure. Here, we analyzed the orchid mycorrhizal fungi communities associated with three sympatric Cymbidieae epiphytic tropical orchids (Cyrtochilum flexuosum, Cyrtochilum myanthum, and Maxillaria calantha) at two sites located within the mountain rainforest of southern Ecuador. To characterize these communities at each orchid population, the ITS2 region was analyzed by Illumina MiSeq technology. Fifty-five mycorrhizal fungi operational taxonomic units (OTUs) putatively attributed to members of Serendipitaceae, Ceratobasidiaceae and Tulasnellaceae were identified. Significant differences in mycorrhizal communities were detected between the three sympatric orchid species as well as among sites/populations. Interestingly, some mycorrhizal OTUs overlapped among orchid populations. Our results suggested that populations of studied epiphytic orchids have site-adjusted mycorrhizal communities structured around keystone fungal species. Interaction with multiple mycorrhizal fungi could favor orchid site occurrence and co-existence among several orchid species.

Keywords

Epiphytic tropical orchids Co-existing species Illumina sequencing ITS2 Microbial community assembly OTU reconstruction 

Supplementary material

572_2016_746_MOESM1_ESM.docx (117 kb)
ESM 1(DOCX 116 kb)

References

  1. Abarenkov K, Henrik Nilsson R, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T et al (2010a) The UNITE database for molecular identification of fungi recent updates and future perspectives. The New Phytol 186:281–285CrossRefPubMedGoogle Scholar
  2. Abarenkov K, Tedersoo L, Nilsson RH, Vellak K, Saar I, Veldre V, Parmasto E, Prous M, Aan A, Ots M et al (2010b) Plutof-a web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evol Bioinform 6:189–196Google Scholar
  3. Bailarote BC, Lievens B, Jacquemyn H (2012) Does mycorrhizal specificity affect orchid decline and rarity? Am J Bot 99:1655–1665CrossRefPubMedGoogle Scholar
  4. Beck E, Makeschin F, Haubrich F, Richter M, Bendix J, Valarezo C (2008) The ecosystem (Reserva Biológica San Francisco). In: Bendix J, Kottke I, Makenschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Springer, Heidelberg, Germany, pp. 1–13CrossRefGoogle Scholar
  5. Colwell RK (2013) EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application published at: http://purl.oclc.org/estimates
  6. Dearnaley JDW, Martos F, Selosse MA (2012) Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Hock B (ed) Fungal associations, 2nd edn. Springer, Berlin, Germany, pp. 207–230CrossRefGoogle Scholar
  7. Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998CrossRefPubMedGoogle Scholar
  8. Freudenstein JV, Chase MW (2015) Phylogenetic relationships in Epidendroideae (Orchidaceae), one of the great flowering plant radiations: progressive specialization and diversification. Ann Bot 115:665–681CrossRefPubMedPubMedCentralGoogle Scholar
  9. Guimarães PR, Jordano P, Thompson JN (2011) Evolution and coevolution in mutualistic networks. Ecol Lett 14:877–885CrossRefPubMedGoogle Scholar
  10. Hart MM, Forsythe J, Oshowski B, Bücking H, Jansa J, Kiers ET (2013) Hiding in a crowd - does diversity facilitate persistence of a low-quality fungal partner in the mycorrhizal symbiosis? Symbiosis 59:47–56CrossRefGoogle Scholar
  11. Jacquemyn H, Brys R, Cammue BPA, Honnay O, Lievens B (2011) Mycorrhizal associations and reproductive isolation in three closely related Orchis species. Ann Bot 107:347–356CrossRefPubMedGoogle Scholar
  12. Jacquemyn H, Brys R, Merckx VSFT, Waud M, Lievens B, Wiegand T (2014) Coexisting orchid species have distinct mycorrhizal communities and display strong spatial segregation. New Phytol 202:616–627CrossRefPubMedGoogle Scholar
  13. Jacquemyn H, Brys R, Waud M, Busschaert P, Lievens B (2015) Mycorrhizal networks and coexistence in species-rich orchid communities. New Phytol 206:1127–1134CrossRefPubMedGoogle Scholar
  14. Jacquemyn H, Deja A, de Hert K, Cachapa Bailarote B, Lievens B (2012) Variation in mycorrhizal associations with tulasnelloid fungi among populations of five Dactylorhiza species. PLoS One 7:1–10CrossRefGoogle Scholar
  15. Jacquemyn H, Honnay O, Cammue BPA, Brys R, Lievens B (2010) Low specificity and nested subset structure characterize mycorrhizal associations in five closely related species of the genus Orchis. Mol Ecol 19:4086–4095CrossRefPubMedGoogle Scholar
  16. Jacquemyn H, Waud M, Lievens B, Brys R (2016) Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica. Annals of Botany: mcw015Google Scholar
  17. Jiménez-Valverde A, Hortal J (2003) Las curvas de acumulación de especies y la necesidad de evaluar la calidad de los inventarios biológicos. Revista Ibérica de Aracnología 8:151–161Google Scholar
  18. Kartzinel TR, Trapnell DW, Shefferson RP (2013) Highly diverse and spatially heterogeneous mycorrhizal symbiosis in a rare epiphyte is unrelated to broad biogeographic or environmental features. Mol Ecol 22:5949–5961CrossRefPubMedGoogle Scholar
  19. Kottke I, Setaro S, Haug I, Herrera P, Cruz D, Fries A, Gawlik J, Homeier J, Werner FA, Gerique A et al (2013) Mycorrhiza networks promote biodiversity and stabilize the tropical mountain rain forest ecosystem: perspectives for understanding complex communities. In: Bendix J, Beck E, Bräuning A, Makeschin F, Mosandl R, Scheu S, Wilcke W (eds) Ecosystem services, biodiversity and environmental change in a tropical mountain ecosystem of South Ecuador. Springer, Berlin, Germany, pp. 187–203CrossRefGoogle Scholar
  20. Kottke I, Suárez JP, Herrera P, Cruz D, Bauer R, Haug I, Garnica S (2010) Atractiellomycetes belonging to the ‘rust’ lineage (Pucciniomycotina) form mycorrhizae with terrestrial and epiphytic neotropical orchids. P Roy Soc B-Biol Sci 277:1289–1298CrossRefGoogle Scholar
  21. Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11:995–1003CrossRefPubMedGoogle Scholar
  22. Martos F, Munoz F, Pailler T, Kottke I, Gonneau C, Selosse MA (2012) The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids. Mol Ecol 21:5098–5109CrossRefPubMedGoogle Scholar
  23. McCormick MK, Jacquemyn H (2014) What constrains the distribution of orchid populations? New Phytol 202:392–400CrossRefGoogle Scholar
  24. Oksanen AJ, Blanchet FG, Kindt R, Legendre P, Minchin PR, Hara RBO, Simpson GL, Solymos P, Stevens MHH, Wagner H (2016) Vegan: community ecology package. R Package Version 2:3–5Google Scholar
  25. Pellegrino G, Luca A, Bellusci F (2014) Relationships between orchid and fungal biodiversity: mycorrhizal preferences in Mediterranean orchids. Plant Biosyst 3504:1–10Google Scholar
  26. R Core Team (2015) R: A language and environment for statistical computing. Vienna, Austria.Google Scholar
  27. Riofrío ML, Cruz D, Torres E, de la Cruz M, Iriondo JM, Suárez JP (2013) Mycorrhizal preferences and fine spatial structure of the epiphytic orchid Epidendrum rhopalostele. Am J Bot 100(12):2339–2348CrossRefPubMedGoogle Scholar
  28. Senés-Guerrero C, Torres-Cortés G, Pfeiffer S, Rojas M, Schüßler A (2014) Potato-associated arbuscular mycorrhizal fungal communities in the Peruvian Andes. Mycorrhiza 24:405–417CrossRefPubMedGoogle Scholar
  29. Smith SE, Read D (2008) Mycorrhizal symbiosis. Academic Press, New York, USAGoogle Scholar
  30. Suárez JP, Kottke I (2016) Main fungal partners and different levels of specificity of orchid mycorrhizae in the tropical mountain forests of Ecuador. Lankesteriana 16(2):299–305CrossRefGoogle Scholar
  31. Suárez JP, Eguiguren S, Herrera P, Jost L (2016) Do mycorrhizal fungi drive speciation in Teagueia (orchidaceae) in the upper Pastaza watershed of Ecuador? Symbiosis 36:135–136Google Scholar
  32. Suárez JP, Weiß M, Abele A, Garnica S, Oberwinkler F, Kottke I (2006) Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycol Res 110:1257–1270CrossRefPubMedGoogle Scholar
  33. Suárez JP, Weiß M, Abele A, Oberwinkler F, Kottke I (2008) Members of Sebacinales subgroup B form mycorrhizae with epiphytic orchids in a neotropical mountain rain forest. Mycol Prog 7:75–85CrossRefGoogle Scholar
  34. Těšitelová T, Kotílinek M, Jersáková J, Joly FX, Košnar J, Tatarenko I, Selosse MA (2015) Two widespread green Neottia species (Orchidaceae) show mycorrhizal preference for Sebacinales in various habitats and ontogenetic stages. Mol Ecol 24:1122–1134CrossRefPubMedGoogle Scholar
  35. Turenne C, Sanche S, Hoban D, Karlowsky J, Kabani A (1999) Rapid identification of fungi by using the ITS2 genetic region and an automated fluorescent capillary electrophoresis system. J Clin Microbiol 37:1846–1851Google Scholar
  36. Valadares RBDS, Otero JT, Pereira MC, Cardoso EJBN (2015) The epiphytic orchids Ionopsis utricularioides and Psygmorchis pusilla associate with different Ceratobasidium lineages at Valle del Cauca, Colombia. Acta Bot Bras 29:40–44CrossRefGoogle Scholar
  37. Waterman RJ, Bidartondo MI, Stofberg J, Combs JK, Gebauer G, Savolainen V, Barraclough TG, Pauw A (2011) The effects of above-and belowground mutualisms on orchid speciation and coexistence. Am Nat 177:E54–E68CrossRefPubMedGoogle Scholar
  38. Waud M, Busschaert P, Lievens B, Jacquemyn H (2016) Specificity and localised distribution of mycorrhizal fungi in the soil may contribute to co-existence of orchid species. Fungal Ecol 20:155–165CrossRefGoogle Scholar
  39. Waud M, Busschaert P, Ruyters S, Jacquemyn H, Lievens B (2014) Impact of primer choice on characterization of orchid mycorrhizal communities using 454 pyrosequencing. Mol Ecol Resour 14:679–699CrossRefPubMedGoogle Scholar
  40. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomial RNA genes for phyologenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San DiegoGoogle Scholar
  41. Xing X, Ma X, Deng Z, Chen J, Wu F, Guo S (2013) Specificity and preference of mycorrhizal associations in two species of the genus Dendrobium (orchidaceae). Mycorrhiza 23:317–324CrossRefPubMedGoogle Scholar
  42. Zotz G, Hietz P (2001) The physiological ecology of vascular epiphytes: current knowledge, open questions. J Exp Bot 52:2067–2078CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Earth and Life Institute, Applied Microbiology, MycologyUniversité catholique de LouvainLouvain-la-NeuveBelgium
  2. 2.Departamento de Ciencias BiológicasUniversidad Técnica Particular de LojaLojaEcuador
  3. 3.Earth and Life Institute, Applied Microbiology, MycologyUniversité catholique de Louvain, Mycothèque de l’Université catholique de Louvain (MUCL1)Louvain-la-NeuveBelgium

Personalised recommendations