Mycorrhiza

, Volume 26, Issue 8, pp 895–907 | Cite as

Fine-scale genetic structure of natural Tuber aestivum sites in southern Germany

  • Virginie Molinier
  • Claude Murat
  • Andri Baltensweiler
  • Ulf Büntgen
  • Francis Martin
  • Barbara Meier
  • Barbara Moser
  • Ludger Sproll
  • Ulrich Stobbe
  • Willy Tegel
  • Simon Egli
  • Martina Peter
Original Article

Abstract

Although the Burgundy truffle (Tuber aestivum) is an ectomycorrhizal fungus of important economic value, its subterranean life cycle and population biology are still poorly understood. Here, we determine mating type and simple sequence repeat (SSR) maternal genotypes of mapped fruiting bodies to assess their genetic structure within two naturally colonized forest sites in southern Germany. Forty-one genotypes were identified from 112 fruiting bodies. According to their mating types, the maternal genotypes were aggregated only in one population. Genotypic diversity of individuals that mostly were small and occurred in 1 out of 2 years of sampling was high. Although these results suggested a ruderal colonization strategy, some genets spread several hundred meters. This result indicates that, besides sexual spore dispersal, vegetative growth or spreading by mycelial propagules contributes to dissemination. In one site, fewer individuals with a tendency to expand genets belonging to only one genetic group were observed. In the second site, numerous small individuals were found and were grouped into two clearly differentiated genetic groups that were spatially intermingled. Forest characteristics and disturbances are possible reasons for the observed genetic patterns. Our findings contribute to a better understanding of the biology of one of the most widespread and commercially important truffle species. This knowledge is critical for establishing and maintaining sustainable long-term truffle cultivations.

Keywords

Burgundy truffle Genets Mating-type genes Population genetics Propagation strategy SSR markers 

Supplementary material

572_2016_719_MOESM1_ESM.docx (500 kb)
ESM 1Figure S1 Locations of the two sampling sites Ueberlingen (UL) and Bohlingen (BB). Figure S2 Centered location points for genets >15 m. Sizes of genets are represented by colored ovals and location points by colored dots. Figure S3 Maps of the three different sampling scenarios used for checking potential sampling bias. In case 1, the sampling areas of UB and BB are the same. In case 2, the sampling areas of UB 2013 and UB 2011 are identical. In case 3, three different sampling perimeters with the same area are defined within the BB site. Figure S4 Texture and physico-chemical properties of sampling site soils S4a : Soil texture triangle of the two sites and S4b : Physico-chemical properties of the two sampling site soils Figure S5 Plots of the mean number of genotypes and genotypic diversity versus the number of loci. Figure S6 Spatial autocorrelogram of the kinship coefficient (Fij) as a function of the log of the spatial distance. Panels (a), (b), (c) and (d) represent the autocorrelograms for which all genets were used for BB and UL, UL in 2011 and UL in 2013, respectively. The dashed lines correspond to the 95 % confidence interval for the null hypothesis of complete spatial randomness of genotypes, constructed by 10,000 permutations of genotypes across individual positions. The slope of the regression of kinship with log (dist) is indicated as b for each correlogram. The statistic (Sp), defined as the ratio -b/(1 - F1) where b is the regression slope of the autocorrelogram and F1 is the mean Fij between the individuals belonging to the first distance class that includes all pairs of neighbours (Vekemans & Hardy, 2004), is indicated for each autocorrelogram. An asterisk indicates a b-log with a p value < 0.05. (DOCX 500 kb)
572_2016_719_MOESM2_ESM.docx (107 kb)
ESM 2Table S1 Vegetation cover and species composition at the study sites BB and UL, based on two 200 m2 circle plot surveys. All species present in the tree layer (individuals >5 m), the shrub layer (individuals 0.5 m – 5 m), and the herb layer (<0.5 m) are listed. The sum of cover of all species may exceed 100 % as species can overlap. An asterisk after the species names indicates potential host trees of T. aestivum. Table S2 Weight, maturity, multi-loci genotype (MLG) and genetic group membership for each fruiting body. Table S3 Allele frequencies over all samples (3a) and per site (3b) for each locus (the majority allele for each SSR marker for each locus is shown in bold). Table S4 Probability of multilocus genotypes (PGen) and probability that these arise from distinct sexual events (Psex) for samples harvested in BB and UL truffle sites. ns = not significant. Table S5 Clonal diversity parameters of the two populations according to the different cases and in comparison with the original data and areas. (DOCX 107 kb)

References

  1. Agapow PM, Burt A (2001) Indices of multilocus linkage disequilibrium. Mol Ecol Notes 1(1-2):101–102. doi:10.1046/j.1471-8278.2000.00014.x CrossRefGoogle Scholar
  2. Arnaud-Haond S, Belkhir K (2007) genclone: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes 7(1):15–17. doi:10.1111/j.1471-8286.2006.01522.x CrossRefGoogle Scholar
  3. Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16(24):5115–5139. doi:10.1111/j.1365-294X.2007.03535.x CrossRefPubMedGoogle Scholar
  4. Belfiori B, Riccioni C, Paolocci F, Rubini A (2013) Mating type locus of Chinese black truffles reveals heterothallism and the presence of cryptic species within the T. Indicum species complex. PLoS ONE 8(12):e82353. doi:10.1371/journal.pone.0082353 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Benucci GMN, Raggi L, Albertini E, Grebenc T, Bencivenga M, Falcinelli M, Di Massimo G (2011) Ectomycorrhizal communities in a productive Tuber aestivum vittad. Orchard: composition, host influence and species replacement. FEMS Microbiol Ecol 76:170–184. doi:10.1111/j.1574-6941.2010.01039.x CrossRefPubMedGoogle Scholar
  6. Benucci G, Bonito G, Falini L, Bencivenga M (2012) Mycorrhization of pecan trees (Carya illinoinensis) with commercial truffle species: Tuber aestivum vittad. And Tuber borchii vittad. Mycorrhiza 22(5):383–392. doi:10.1007/s00572-011-0413-z CrossRefPubMedGoogle Scholar
  7. Billiard S, LÓPez-Villavicencio M, Hood ME, Giraud T (2012) Sex, outcrossing and mating types: unsolved questions in fungi and beyond. J Evolution Biol 25:1020–1038. doi:10.1111/j.1420-9101.2012.02495.x CrossRefGoogle Scholar
  8. Bonello P, Bruns TD, Gardes M (1998) Genetic structure of a natural population of the ectomycorrhizal fungus Suillus pungens. New Phytol 138:533–542. doi:10.1046/j.1469-8137.1998.00122.x CrossRefGoogle Scholar
  9. Bonito GM, Gryganskyi AP, Trappe JM, Vilgalys R (2010) A global meta-analysis of Tuber ITS rDNA sequences: species diversity, host associations and long-distance dispersal. Mol Ecol 19:4994–5008. doi:10.1111/j.1365-294X.2010.04855.x CrossRefPubMedGoogle Scholar
  10. Bonito G, Smith ME, Nowak M, Healy RA, Guevara G, Cázares E, Kinoshita A, Nouhra ER, Domínguez LS, Tedersoo L, Murat C, Wang Y, Moreno BA, Pfister DH, Nara K, Zambonelli A, Trappe JM, Vilgalys R (2013) Historical biogeography and diversification of truffles in the Tuberaceae and their newly identified Southern hemisphere sister lineage. PLoS ONE 8(1):e52765. doi:10.1371/journal.pone.0052765 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Carriconde F, Gryta H, Jargeat P, Mouhamadou B, Gardes M (2008) High sexual reproduction and limited contemporary dispersal in the ectomycorrhizal fungus Tricholoma scalpturatum: new insights from population genetics and spatial autocorrelation analysis. Mol Ecol 17:4433–4445. doi:10.1111/j.1365-294X.2008.03924.x CrossRefPubMedGoogle Scholar
  12. Ceruti A, Fontana A, Nosenzo C (2003) Le specie europee del genere Tuber, una revisione storica. Regione Piemonte, Museo regionale di Scienze Naturali de Torino, Torino, p 557, monografie XXXVIIGoogle Scholar
  13. Chevalier G, Grente J, Pollacsek A (1973) Obtention de mycorhizes de différents Tuber par synthèse à partir de spores en conditions gnotoxéniques et à partir de cultures pures de mycélium en conditions axéniques et gnotoxéniques. Ann Phytopathologie 5:107–108Google Scholar
  14. Croll D, Wille L, Gamper HA, Mathimaran N, Lammers PJ, Corradi N, Sanders IR (2008) Genetic diversity and host plant preferences revealed by simple sequence repeat and mitochondrial markers in a population of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 178:672–687. doi:10.1111/j.1469-8137.2008.02381.x CrossRefPubMedGoogle Scholar
  15. Cullere L, Ferreira V, Chevret B, Venturini ME, Sanchez-Gimeno AC, Blanco D (2010) Characterisation of aroma active compounds in black truffles (Tuber melanosporum) and summer truffles (Tuber aestivum) by gas chromatography-olfactometry. Food Chem 122:300–306. doi:10.1016/j.foodchem.2010.02.024 CrossRefGoogle Scholar
  16. Dahlberg A, Stenlid J (1994) Size, distribution and biomass of genets in populations of Suillus bovinus (L.: Fr.) Roussel revealed by somatic incompatibility. New Phytol 128:225–234. doi:10.2307/2558318 CrossRefGoogle Scholar
  17. Deacon JW (1992) Interactions of ectomycorrhizal fungi mycorrhizal functioning: an integrative plant‐fungal processGoogle Scholar
  18. Diaz P, Ibanez E, Reglero G, Senorans FJ (2009) Optimization of summer truffle aroma analysis by SPME: Comparison of extraction with different polarity fibres. Lwt-Food Sci Technol 42(7):1253–1259CrossRefGoogle Scholar
  19. Douhan GW, Vincenot L, Gryta H, Selosse MA (2011) Population genetics of ectomycorrhizal fungi: from current knowledge to emerging directions. Fungal Biol 115:569–597. doi:10.1016/j.funbio.2011.03.005 CrossRefPubMedGoogle Scholar
  20. Earl D, vonHoldt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4(2):359–361. doi:10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  21. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  22. Fiore-Donno A-M, Martin F (2001) Populations of ectomycorrhizal Laccaria amethystina and Xerocomus spp. show contrasting colonization patterns in a mixed forest. New Phytol 152:533–542. doi:10.1046/j.0028-646X.2001.00271.x CrossRefGoogle Scholar
  23. Frank JL, Anglin S, Carrington EM, Taylor DS, Viratos B, Southworth D (2009) Rodent dispersal of fungal spores promotes seedling establishment away from mycorrhizal networks on Quercus garryana. Botany 87:821–829. doi:10.1139/B09-044 CrossRefGoogle Scholar
  24. Gandeboeuf D, Dupre C, RoeckelDrevet P, Nicolas P, Chevalier G (1997) Grouping and identification of (Tuber) species using RAPD markers. Can J Bot-Rev Can Botanique 75(1):36–45Google Scholar
  25. Glass NL, Jacobson DJ, Shiu PK (2000) The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annu Rev Genet 34:165–186CrossRefPubMedGoogle Scholar
  26. Grubisha LC, Bergemann SE, Bruns TD (2007) Host islands within the California Northern Channel Islands create fine-scale genetic structure in two sympatric species of the symbiotic ectomycorrhizal fungus Rhizopogon. Mol Ecol 16:1811–1822. doi:10.1111/j.1365-294X.2007.03264.x CrossRefPubMedGoogle Scholar
  27. Gryndler M, Hrselova H, Soukupova L, Streiblova E, Valda S, Borovicka J, Gryndlerova H, Gazo J, Miko M (2011) Detection of summer truffle (Tuber aestivum Vittad.) in ectomycorrhizae and in soil using specific primers. Fems Microbiol Lett 318:84–91. doi:10.1111/j.1574-6968.2011.02243.x CrossRefPubMedGoogle Scholar
  28. Gryndler M, Beskid O, Hršelová H, Bukovská P, Hujslová M, Gryndlerová H, Konvalinková T, Schnepf A, Sochorová L, Jansa J (2015) Mutabilis in mutabili: Spatiotemporal dynamics of a truffle colony in soil. Soil Biol Biochem 90:62-70. doi:10.1016/j.soilbio.2015.07.025
  29. Hardy OJ (2003) Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Mol Ecol 12:1577–1588. doi:10.1046/j.1365-294X.2003.01835.x CrossRefPubMedGoogle Scholar
  30. Hardy OJ, Vekemans X (2002) SPAGEDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. doi:10.1046/j.1471-8286.2002.00305.x CrossRefGoogle Scholar
  31. Healy RA et al (2013) High diversity and widespread occurrence of mitotic spore mats in ectomycorrhizal pezizales. Mol Ecol 22:1717–1732CrossRefPubMedGoogle Scholar
  32. Iotti M, Amicucci A, Stocchi V, Zambonelli A (2002) Morphological and molecular characterization of mycelia of some Tuber species in pure culture. New Phytol 155:499–505. doi:10.1046/j.1469-8137.2002.00486.x CrossRefGoogle Scholar
  33. Jeandroz S, Murat C, Wang YJ, Bonfante P, Le Tacon F (2008) Molecular phylogeny and historical biogeography of the genus Tuber, the ‘true truffles’. J Biogeography 35:815–829. doi:10.1111/j.1365-2699.2007.01851.x CrossRefGoogle Scholar
  34. Landolt E (2010) Flora indicativa: ecological indicator values and biological attributes of the flora of Switzerland and the Alps, 2nd edn. Haupt, BernGoogle Scholar
  35. Le Tacon F, Rubini A, Murat C, Riccioni C, Robin C, Belfiori B, Zeller B, De la Varga H, Akroume E, Deveau A, Martin F, Paolocci F (2015) Certainties and uncertainties about the life cycle of the Périgord black truffle (Tuber melanosporum Vittad.). Ann Forest Sci:1-13. doi:10.1007/s13595-015-0461-1
  36. Leslie JF, Zeller KA (1996) Heterokaryon incompatibility in fungi: more than just another way to die. J Genet 75:415–424CrossRefGoogle Scholar
  37. Linde CC, Selmes H (2012) Genetic diversity and mating type distribution of tuber melanosporum and their significance to truffle cultivation in artificially planted truffiéres in Australia. Appl Environm Microbiol 78:6534–6539. doi:10.1128/aem.01558-12 CrossRefGoogle Scholar
  38. Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic-structure of a tropical understory shrub, Psychotria officinalis (Rubiaceae). Am J Bot 82:1420–1425. doi:10.2307/2445869 CrossRefGoogle Scholar
  39. Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Aury JM, Ballario P, Bolchi A, Brenna A, Brun A, Buee M, Cantarel B, Chevalier G, Couloux A, Da Silva C, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Iotti M, Marcais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserant E, Viscomi AR, Zambonelli A, Zampieri E, Henrissat B, Lebrun MH, Paolocci F, Bonfante P, Ottonello S, Wincker P (2010) Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464(7291):1033–1038. doi:10.1038/nature08867 CrossRefPubMedGoogle Scholar
  40. Mello A, Cantisani A, Vizzini A, Bonfante P (2002) Genetic variability of Tuber uncinatum and its relatedness to other black truffles. Environ Microbiol 4(10):584–594CrossRefPubMedGoogle Scholar
  41. Molinier V, Murat C, Morin E, Gollotte A, Wipf D, Martin F (2013a) First Identification of polymorphic microsatellite markers in the burgundy truffle, Tuber aestivum (Tuberaceae). Appl Plant Sci 1 (2):1200220. doi:10.3732/apps.1200220
  42. Molinier V, van Tuinen D, Chevalier G, Gollotte A, Wipf D, Redecker D (2013b) A multigene phylogeny demonstrates that Tuber aestivum and Tuber uncinatum are conspecific. Organ Divers Evol 13:503–512Google Scholar
  43. Molinier V, Murat C, Frochot H, Wipf D, Splivallo R (2015a) Fine-scale spatial genetic structure analysis of the black truffle Tuber aestivum and its link to aroma variability. Environ Microbiol doi:10.1111/1462-2920.12910
  44. Molinier V, Murat C, Peter M, Gollotte A, De la Varga H, Meier B, Egli S, Belfiori B, Paolocci F, Wipf D (2015b) SSR- based identification of genetic groups within European populations of Tuber aestivum Vittad Mycorrhiza doi: 10.1007/s00572-015-0649-0
  45. Molinier V, Stobbe U, Peter M, Egli S (2016) The Burgundy truffle (Tuber aestivum syn. uncinatum) – a truffle species with a wide habitat range over Europe. In: Zambonelli A, Iotti M, Murat C (eds) True Truffles (Tuber spp.) of the World, vol 47. Soil Biology SpringerGoogle Scholar
  46. Murat C, Rubini A, Riccioni C, De la Varga H, Akroume E, Belfiori B, Guaragno M, Le Tacon F, Robin C, Halkett F, Martin F, Paolocci F (2013) Fine-scale spatial genetic structure of the black truffle (Tuber melanosporum) investigated with neutral microsatellites and functional mating type genes. New Phytol 199(1):176–187. doi:10.1111/nph.12264 CrossRefPubMedGoogle Scholar
  47. Pacioni G, Pomponi G (1991) Genotypic patterns of some Italian populations of the Tuber aestivum-Tuber mesentericum complex. Mycotaxon 42:171–179Google Scholar
  48. Pacioni G, Leonardi M, Di Carlo P, Ranalli D, Zinni A, De Laurentiis G (2014) Instrumental monitoring of the birth and development of truffles in a Tuber melanosporum orchard. Mycorrhiza 24(1):65–72. doi:10.1007/s00572-014-0561-z CrossRefGoogle Scholar
  49. Paolocci F, Rubini A, Riccioni C, Topini F, Arcioni S (2004) Tuber aestivum and Tuber uncinatum: two morphotypes or two species? Fems Microbiol Lett 235(1):109–115CrossRefPubMedGoogle Scholar
  50. Paolocci F, Rubini A, Riccioni C, Arcioni S (2006) Reevaluation of the life cycle of Tuber magnatum. Appl Environ Microbiol 72(4):2390–2393CrossRefPubMedPubMedCentralGoogle Scholar
  51. Payen T, Murat C, Bonito G (2014) Truffle phylogenomics: new insights into truffle evolution and truffle life cycle. In: Martin F (ed) Advance in Botanical Research vol. 70, Elsevier, p 211–234Google Scholar
  52. Piattoni F (2012) The role of wild boars in spore dispersal of hypogeous fungi. Acta Mycol 47(2):145–153CrossRefGoogle Scholar
  53. Piattoni F, Amicucci A, Iotti M, Ori F, Stocchi V, Zambonelli A (2014) Viability and morphology of Tuber aestivum spores after passage through the gut of Sus scrofa. Fung Ecol 9:52-60. doi:10.1016/j.funeco.2014.03.002
  54. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959PubMedPubMedCentralGoogle Scholar
  55. Riccioni C, Belfiori B, Rubini A, Passeri V, Arcioni S, Paolocci F (2008) Tuber melanosporum outcrosses: analysis of the genetic diversity within and among its natural populations under this new scenario. New Phytol 180(2):466–478CrossRefPubMedGoogle Scholar
  56. Rubini A, Paolocci F, Riccioni C, Vendramin GG, Arcioni S (2005) Genetic and phylogeographic structures of the symbiotic fungus Tuber magnatum. Appl Environ Microbiol 71(11):6584–6589. doi:10.1128/aem.71.11.6584-6589.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rubini A, Belfiori B, Riccioni C, Arcioni S, Martin F, Paolocci F (2011a) Tuber melanosporum: mating type distribution in a natural plantation and dynamics of strains of different mating types on the roots of nursery-inoculated host plants. New Phytol 189 (3):723-735. doi:10.1111/j.1469-8137.2010.03493.x
  58. Rubini A, Belfiori B, Riccioni C, Tisserant E, Arcioni S, Martin F, Paolocci F (2011b) Isolation and characterization of MAT genes in the symbiotic ascomycete Tuber melanosporum. New Phytol 189 (3):710-722. doi:10.1111/j.1469-8137.2010.03492.x
  59. Salerni E, Aguanno M, Leonardi P, Perini C (2014) Ectomycorrhizal communities above and below ground and truffle productivity in a Tuber aestivum orchard. Forest Syst 23 (2). doi:10.5424/fs/2014232-04777
  60. Sbrana C, Nuti MP, Giovannetti M (2007) Self-anastomosing ability and vegetative incompatibility of Tuber borchii isolate. Mycorrhiza 17:667–675CrossRefPubMedGoogle Scholar
  61. Selosse M-A, Taschen E, Giraud T (2013) Do black truffles avoid sexual harassment by linking mating type and vegetative incompatibility? New Phytol 199(1):10–13. doi:10.1111/nph.12329 CrossRefPubMedGoogle Scholar
  62. Shamekh S, Grebenc T, Leisola M, Turunen O (2014) The cultivation of oak seedlings inoculated with Tuber aestivum Vittad. in the boreal region of Finland. Mycol Prog 13(2):373–380. doi:10.1007/s11557-013-0923-5 CrossRefGoogle Scholar
  63. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, LondonGoogle Scholar
  64. Splivallo R, Valdez N, Kirchhoff N, Ona MC, Schmidt JP, Feussner I, Karlovsky P (2012) Intraspecific genotypic variability determines concentrations of key truffle volatiles. New Phytol 194(3):823–835. doi:10.1111/j.1469-8137.2012.04077.x CrossRefPubMedPubMedCentralGoogle Scholar
  65. Stenberg P, Lundmark M, Saura A (2003) MLGsim: a program for detecting clones using a simulation approach. Mol Ecol Notes 3(2):329–331. doi:10.1046/j.1471-8286.2003.00408.x CrossRefGoogle Scholar
  66. Stobbe U, Egli S, Tegel W, Peter M, Sproll L, Büntgen U (2013a) Potential and limitations of Burgundy truffle cultivation. Appl Microbiol Biotechnol 97 (12):5215-5224. doi:10.1007/s00253-013-4956-0
  67. Stobbe U, Stobbe A, Sproll L, Tegel W, Peter M, Büntgen U, Egli S (2013b) New evidence for the symbiosis between Tuber aestivum and Picea abies. Mycorrhiza 23 (8):669-673. doi:10.1007/s00572-013-0508-9
  68. Trappe J, Claridge A (2005) Hypogeous fungi: evolution of reproductive and dispersal strategies through interactions with animals and mycorrhizal plants. In: Dighton JWJ, Oudemans P (eds) The fungal community. Its organization and role in the ecosystem. CRC, Boca Raton, pp 599–611Google Scholar
  69. Urban A (2016) Truffles and small mammals. In: Zambonelli A, Iotti M, Murat C (eds) True Truffles (Tuber spp.) of the World, vol 47. Soil Biology SpringerGoogle Scholar
  70. Vekemans X, Hardy OJ (2004) New insights from fine-scale spatial genetic structure analyses in plant populations. Mol Ecol 13(4):921–935. doi:10.1046/j.1365-294X.2004.02076.x CrossRefPubMedGoogle Scholar
  71. Weden C, Danell E, Camacho FJ, Backlund A (2004) The population of the hypogeous fungus Tuber aestivum syn. T-uncinatum on the island of Gotland. Mycorrhiza 14(1):19–23. doi:10.1007/s00572-003-0271-4 CrossRefPubMedGoogle Scholar
  72. Weden C, Danell E, Tibell L (2005) Species recognition in the truffle genus Tuber—the synonyms Tuber aestivum and Tuber uncinatum. Environ Microbiol 7(10):1535–1546. doi:10.1111/j.1462-2920.2005.00837.x CrossRefPubMedGoogle Scholar
  73. Zeppa S, Gioacchini AM, Guidi C, Guescini M, Pierleoni R, Zambonelli A, Stocchi V (2004) Determination of specific volatile organic compounds synthesised during Tuber borchii fruit body development by solid-phase microextraction and gas chromatography mass spectrometry. Rapid Commun Mass Spectrom 18(2):199–205. doi:10.1002/rcm.1313 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Virginie Molinier
    • 1
  • Claude Murat
    • 2
  • Andri Baltensweiler
    • 1
  • Ulf Büntgen
    • 1
    • 3
    • 4
  • Francis Martin
    • 2
  • Barbara Meier
    • 1
  • Barbara Moser
    • 1
  • Ludger Sproll
    • 5
  • Ulrich Stobbe
    • 5
  • Willy Tegel
    • 6
  • Simon Egli
    • 1
  • Martina Peter
    • 1
  1. 1.Swiss Federal Institute for Forest Snow and Landscape Research (WSL)BirmensdorfSwitzerland
  2. 2.INRAUniversité de Lorraine, UMR1136 Interactions Arbres-Microorganismes, Laboratoire d’Excellence ARBREChampenouxFrance
  3. 3.Oeschger Centre for Climate Change ResearchBernSwitzerland
  4. 4.Global Change Research Centre AS CRBrnoCzech Republic
  5. 5.Deutsche TrüffelbäumeRadolfzellGermany
  6. 6.Institute of Forest Sciences IWWFreiburg UniversityFreiburgGermany

Personalised recommendations