, Volume 26, Issue 6, pp 553–563 | Cite as

Reconstructing the evolutionary history of gypsy retrotransposons in the Périgord black truffle (Tuber melanosporum Vittad.)

  • Thibaut Payen
  • Claude Murat
  • Francis Martin
Original Article


Truffles are ascomycete fungi belonging to genus Tuber, and they form ectomycorrhizal associations with trees and shrubs. Transposable elements constitute more than 50 % of the black Périgord truffle (Tuber melanosporum) genome, which are mainly class 1 gypsy retrotransposons, but their impact on its genome is unknown. The aims of this study are to investigate the diversity of gypsy retrotransposons in this species and their evolutionary history by analysing the reference genome and six resequenced genomes of different geographic accessions. Using the reverse transcriptase sequences, six different gypsy retrotransposon clades were identified. Tmt1 and Tmt6 are the most abundant transposable elements, representing 14 and 13 % of the T. melanosporum genome, respectively. Tmt6 showed a major burst of proliferation between 1 and 4 million years ago, but evidence of more recent transposition was observed. Except for Tmt2, the other clades tend to aggregate, and their mode of transposition excluded the master copy model. This suggests that each new copy has the same probability of transposing as other copies. This study provides a better view of the diversity and dynamic nature of gypsy retrotransposons in T. melanosporum. Even if the major gypsy retrotransposon bursts are old, some elements seem to have transposed recently, suggesting that they may continue to model the truffle genomes.


Truffle Transposable elements Chromovirus Gypsy retrotransposons Transposition dynamic 



The UMR1136 is supported by a grant overseen by the French National Research Agency (ANR) as part of the ‘Investissements d’Avenir’ program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE). This study benefited from ANR SYSTERRA SYSTRUF (ANR-09-STRA-10). The PhD fellowship of Thibaut Payen is co-funded by the Lorraine Region and the European Commission through the EcoFINDERS project (FP7-264465). We would like to thank Dr. Arnaud Le Rouzic for his critical reading of a previous version of the manuscript.

Supplementary material

572_2016_692_MOESM1_ESM.ppt (238 kb)
Fig. S1 (PPT 238 kb)
572_2016_692_MOESM2_ESM.ppt (184 kb)
Fig. S2 (PPT 183 kb)
572_2016_692_MOESM3_ESM.ppt (186 kb)
Fig. S3 (PPT 186 kb)
572_2016_692_MOESM4_ESM.ppt (164 kb)
Fig. S4 (PPT 163 kb)
572_2016_692_MOESM5_ESM.ppt (232 kb)
Fig. S5 (PPT 232 kb)
572_2016_692_MOESM6_ESM.docx (167 kb)
Table S1 (DOCX 167 kb)
572_2016_692_MOESM7_ESM.docx (61 kb)
Table S2 (DOCX 61 kb)
572_2016_692_MOESM8_ESM.docx (121 kb)
Table S3 (DOCX 121 kb)


  1. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. doi: 10.1016/S0022-2836(05)80360-2 CrossRefPubMedGoogle Scholar
  2. Bae Y-A, Moon S-Y, Kong Y et al (2001) CsRn1, a novel active retrotransposon in a parasitic trematode, Clonorchis sinensis, discloses a new phylogenetic clade of Ty3/gypsy-like LTR retrotransposons. Mol Biol Evol 18:1474–1483CrossRefPubMedGoogle Scholar
  3. Bortolussi N, Durand E, Blum M, François O (2006) apTreeshape: statistical analysis of phylogenetic tree shape. Bioinformatics 22:363–364. doi: 10.1093/bioinformatics/bti798 CrossRefPubMedGoogle Scholar
  4. Britton T, Anderson CL, Jacquet D et al (2007) Estimating divergence times in large phylogenetic trees. Syst Biol 56:741–752. doi: 10.1080/10635150701613783 CrossRefPubMedGoogle Scholar
  5. Capy P, Gasperi G, Biémont C, Bazin C (2000) Stress and transposable elements: co-evolution or useful parasites? Heredity 85:101–106. doi: 10.1046/j.1365-2540.2000.00751.x CrossRefPubMedGoogle Scholar
  6. Clough JE, Foster JA, Barnett M, Wichman HA (1996) Computer simulation of transposable element evolution: random template and strict master models. J Mol Evol 42:52–58. doi: 10.1007/BF00163211 CrossRefPubMedGoogle Scholar
  7. Du J, Tian Z, Hans CS et al (2010) Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J 63:584–598. doi: 10.1111/j.1365-313X.2010.04263.x CrossRefPubMedGoogle Scholar
  8. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. doi: 10.1093/bioinformatics/btq461 CrossRefPubMedGoogle Scholar
  9. Emerson BC, Paradis E, Thébaud C (2001) Revealing the demographic histories of species using DNA sequences. Trends Ecol Evol 16:707–716. doi: 10.1016/S0169-5347(01)02305-9 CrossRefGoogle Scholar
  10. Feschotte C, Gilbert C (2012) Endogenous viruses: insights into viral evolution and impact on host biology. Nat Rev Genet 13:283–296. doi: 10.1038/nrg3199 CrossRefPubMedGoogle Scholar
  11. Gao X, Hou Y, Ebina H et al (2008) Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res 18:359–369. doi: 10.1101/gr.7146408 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Glöckner G, Szafranski K, Winckler T et al (2001) The complex repeats of Dictyostelium discoideum. Genome Res 11:585–594. doi: 10.1101/gr.162201 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Goodwin TJD, Poulter RTM (2001) The diversity of retrotransposons in the yeast Cryptococcus neoformans. Yeast 18:865–880. doi: 10.1002/yea.733 CrossRefPubMedGoogle Scholar
  14. Green B, Bouchier C, Fairhead C et al (2012) Insertion site preference of Mu, Tn5, and Tn7 transposons. Mob DNA. doi: 10.1186/1759-8753-3-3 PubMedPubMedCentralGoogle Scholar
  15. Ho SYW, Shapiro B (2011) Skyline-plot methods for estimating demographic history from nucleotide sequences. Mol Ecol Resour 11:423–434. doi: 10.1111/j.1755-0998.2011.02988.x CrossRefPubMedGoogle Scholar
  16. Hochberg ME, Bertault G, Poitrineau K, Janssen A (2003) Olfactory orientation of the truffle beetle, Leiodes cinnamomea. Entomol Exp Appl 109:147–153. doi: 10.1046/j.1570-7458.2003.00099.x CrossRefGoogle Scholar
  17. Holmes EC, Grenfell BT (2009) Discovering the Phylodynamics of RNA Viruses. PLoS Comput Biol 5, e1000505. doi: 10.1371/journal.pcbi.1000505 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hopkins B, Skellam JG (1954) A new method for determining the type of distribution of plant individuals. Ann Bot 18:213–227Google Scholar
  19. Howe K, Bateman A, Durbin R (2002) QuickTree: building huge neighbour-joining trees of protein sequences. Bioinformatics 18:1546–1547. doi: 10.1093/bioinformatics/18.11.1546 CrossRefPubMedGoogle Scholar
  20. Hua-Van A, Le Rouzic A, Boutin TS et al (2011) The struggle for life of the genome’s selfish architects. Biol Direct 6:19. doi: 10.1186/1745-6150-6-19 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Huerta-Cepas J, Dopazo J, Gabaldón T (2010) ETE: a python environment for tree exploration. BMC Bioinforma 11:24. doi: 10.1186/1471-2105-11-24 CrossRefGoogle Scholar
  22. Judelson HS (2002) Sequence variation and genomic amplification of a family of gypsy-like elements in the oomycete genus phytophthora. Mol Biol Evol 19:1313–1322CrossRefPubMedGoogle Scholar
  23. Jurka J, Kapitonov VV, Pavlicek A et al (2005) Repbase update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467. doi: 10.1159/000084979 CrossRefPubMedGoogle Scholar
  24. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi: 10.1093/molbev/mst010 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kazazian HH (2004) Mobile elements: drivers of genome evolution. Science 303:1626–1632. doi: 10.1126/science.1089670 CrossRefPubMedGoogle Scholar
  26. Kehrer-Sawatzki H, Cooper DN (2007) Structural divergence between the human and chimpanzee genomes. Hum Genet 120:759–778. doi: 10.1007/s00439-006-0270-6 CrossRefPubMedGoogle Scholar
  27. Kendall DG (1948) On the generalized“birth-and-death” process. Ann Mathematical Stat 1–15Google Scholar
  28. Kidwell MG, Lisch DR (2001) Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution 55:1–24. doi: 10.1111/j.0014-3820.2001.tb01268.x CrossRefPubMedGoogle Scholar
  29. Kües U, Martin F (2011) On the road to understanding truffles in the underground. Fungal Genet Biol 48:555–560. doi: 10.1016/j.fgb.2011.02.002 CrossRefPubMedGoogle Scholar
  30. Kumekawa N, Ohmido N, Fukui K et al (2001) A new gypsy-type retrotransposon, RIRE7: preferential insertion into the tandem repeat sequence TrsD in pericentromeric heterochromatin regions of rice chromosomes. Mol Genet Genomics 265:480–488. doi: 10.1007/s004380000436 CrossRefPubMedGoogle Scholar
  31. Le Rouzic A, Payen T, Hua-Van A (2013) Reconstructing the evolutionary history of transposable elements. Genome Biol Evol 5:77–86. doi: 10.1093/gbe/evs130 CrossRefPubMedGoogle Scholar
  32. Llorens C, Fares MA, Moya A (2008) Relationships of gag-pol diversity between Ty3/Gypsy and Retroviridae LTR retroelements and the three kings hypothesis. BMC Evol Biol 8:276. doi: 10.1186/1471-2148-8-276 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Llorens C, Futami R, Covelli L, et al. (2010) The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucl Acids Res gkq1061. doi:  10.1093/nar/gkq1061
  34. Losada A, Abad JP, Agudo M, Villasante A (1999) The analysis of Circe, an LTR retrotransposon of Drosophila melanogaster, suggests that an insertion of non-LTR retrotransposons into LTR elements can create chimeric retroelements. Mol Biol Evol 16:1341–1346CrossRefPubMedGoogle Scholar
  35. Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci U S A 101:12404–12410. doi: 10.1073/pnas.0403715101 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Malik HS, Eickbush TH (1999) Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol 73:5186–5190PubMedPubMedCentralGoogle Scholar
  37. Marín I, Lloréns C (2000) Ty3/Gypsy retrotransposons: description of new Arabidopsis thaliana elements and evolutionary perspectives derived from comparative genomic data. Mol Biol Evol 17:1040–1049CrossRefPubMedGoogle Scholar
  38. Martin F, Kohler A, Murat C et al (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038. doi: 10.1038/nature08867 CrossRefPubMedGoogle Scholar
  39. McCarthy EM, McDonald JF (2003) LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics 19:362–367. doi: 10.1093/bioinformatics/btf878 CrossRefPubMedGoogle Scholar
  40. Miyao A, Tanaka K, Murata K et al (2003) Target site specificity of the Tos17 retrotransposon shows a preference for insertion within genes and against insertion in retrotransposon-rich regions of the genome. Plant Cell 15:1771–1780. doi: 10.1105/tpc.012559 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Montanini B, Chen P-Y, Morselli M et al (2014) Non-exhaustive DNA methylation-mediated transposon silencing in the black truffle genome, a complex fungal genome with massive repeat element content. Genome Biol 15:10–1186. doi: 10.1186/s13059-014-0411-5 CrossRefGoogle Scholar
  42. Murat C (2015) Forty years of inoculating seedlings with truffle fungi: past and future perspectives. Mycorrhiza 25:77–81. doi: 10.1007/s00572-014-0593-4 CrossRefPubMedGoogle Scholar
  43. Murat C, Zampieri E, Vallino M et al (2011) Genomic suppression subtractive hybridization as a tool to identify differences in mycorrhizal fungal genomes. FEMS Microbiol Lett 318:115–122. doi: 10.1111/j.1574-6968.2011.02248.x CrossRefPubMedGoogle Scholar
  44. Murat C, Payen T, Petitpierre D, Labbé J (2013) Repeated elements in filamentous fungi with a focus on wood-decay fungi. In: Martin F (ed) The Ecological Genomics of Fungi, Wiley Blackwell, p 21–40. doi :  10.1002/9781118735893.ch2
  45. Nee S, May RM, Harvey PH (1994) The reconstructed evolutionary process. Philos Trans R Soc Lond Ser B Biol Sci 344:305–311. doi: 10.1098/rstb.1994.0068 CrossRefGoogle Scholar
  46. Neumann P, Navrátilová A, Koblížková A et al (2011) Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA 2:4. doi: 10.1186/1759-8753-2-4 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Neuvéglise C, Feldmann H, Bon E et al (2002) Genomic evolution of the long terminal repeat retrotransposons in hemiascomycetous yeasts. Genome Res 12:930–943. doi: 10.1101/gr.219202 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Novikova O, Smyshlyaev G, Blinov A (2010) Evolutionary genomics revealed interkingdom distribution of Tcn1-like chromodomain-containing Gypsy LTR retrotransposons among fungi and plants. BMC Genomics 11:231. doi: 10.1186/1471-2164-11-231 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Nystedt B, Street NR, Wetterbom A et al (2013) The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584. doi: 10.1038/nature12211 CrossRefPubMedGoogle Scholar
  50. Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. doi: 10.1093/bioinformatics/btg412 CrossRefPubMedGoogle Scholar
  51. Payen T, Murat C, Bonito G (2014) Truffle phylogenomics: new insights into truffle evolution and truffle life cycle. In: Martin F (ed) Advance in Botanical Research vol. 70, Elsevier, p 211–234Google Scholar
  52. Payen T, Murat C, Gigant A et al (2015) A survey of genome-wide single nucleotide polymorphisms through genome resequencing in the Périgord black truffle (Tuber melanosporum Vittad.). Mol Ecol Resour 15:1243–1255. doi: 10.1111/1755-0998.12391 CrossRefPubMedGoogle Scholar
  53. Price AL, Jones NC, Pevzner PA (2005) De novo identification of repeat families in large genomes. Bioinformatics 21(Suppl 1):i351–358. doi: 10.1093/bioinformatics/bti1018 CrossRefPubMedGoogle Scholar
  54. Quinlan AR (2014) BEDTools: The Swiss-Army Tool for genome feature analysis. In: Current Protocols in Bioinformatics. John Wiley & Sons, Inc. doi: 10.1002/0471250953.bi1112s47
  55. Rabosky DL (2006) LASER: a maximum likelihood toolkit for detecting temporal shifts in diversification rates from molecular phylogenies. Evol Bioinforma Online 2:273–276Google Scholar
  56. Raffaele S, Kamoun S (2012) Genome evolution in filamentous plant pathogens: why bigger can be better. Nat Rev Microbiol 10:417–430. doi: 10.1038/nrmicro2790 PubMedGoogle Scholar
  57. Revell LJ, Graham Reynolds R (2012) A new Bayesian method for fitting evolutionary models to comparative data with intraspecific variation. Evolution 66:2697–2707. doi: 10.1111/j.1558-5646.2012.01645.x CrossRefPubMedGoogle Scholar
  58. Riccioni C, Rubini A, Belfiori B et al (2008) Tmt1: the first LTR-retrotransposon from a Tuber spp. Curr Genet 53:23–34. doi: 10.1007/s00294-007-0155-9 CrossRefPubMedGoogle Scholar
  59. Robinson JT, Thorvaldsdóttir H, Winckler W et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26. doi: 10.1038/nbt.1754 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Schaack S, Gilbert C, Feschotte C (2010) Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 25:537–546. doi: 10.1016/j.tree.2010.06.001 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Schliep KP (2011) phangorn: phylogenetic analysis in R. Bioinformatics 27:592–593. doi: 10.1093/bioinformatics/btq706 CrossRefPubMedGoogle Scholar
  62. Sievers F, Wilm A, Dineen D et al (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539. doi: 10.1038/msb.2011.75 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Strimmer K, Pybus OG (2001) Exploring the demographic history of DNA sequences using the generalized skyline plot. Mol Biol Evol 18:2298–2305CrossRefPubMedGoogle Scholar
  64. Struchiner CJ, Massad E, Tu Z, Ribeiro J (2009) The tempo and mode of evolution of transposable elements as revealed by molecular phylogenies reconstructed from mosquito genomes. Evolution 63:3136–3146. doi: 10.1111/j.1558-5646.2009.00788.x CrossRefPubMedPubMedCentralGoogle Scholar
  65. Suoniemi A, Tanskanen J, Schulman AH (1998) Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J 13:699–705. doi: 10.1046/j.1365-313X.1998.00071.x CrossRefPubMedGoogle Scholar
  66. Tavares S, Ramos AP, Pires AS et al (2014) Genome size analyses of Pucciniales reveal the largest fungal genomes. Front Plant Sci. doi: 10.3389/fpls.2014.00422 Google Scholar
  67. Wang L, Yu S, Tong C et al (2014) Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis. Genome Biol 15:R39. doi: 10.1186/gb-2014-15-2-r39 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Whisson SC, Vetukuri RR, Avrova AO, Dixelius C (2012) Can silencing of transposons contribute to variation in effector gene expression in Phytophthora infestans? Mob Genet Elem 2:110–114. doi: 10.4161/mge.20265 CrossRefGoogle Scholar
  69. Wicker T, Sabot F, Hua-Van A et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982. doi: 10.1038/nrg2165 CrossRefPubMedGoogle Scholar
  70. Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362PubMedPubMedCentralGoogle Scholar
  71. Yule GU (1924) An introduction to the theory of statistics. Bull Amer Math Soc 465–466. doi: 10.1090/S0002-9904-1924-03953-6

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.UMR1136, “Interactions Arbres/Micro-organismes”, INRA, Université de Lorraine, Laboratoire d’Excellence ARBREChampenouxFrance

Personalised recommendations