Skip to main content

Advertisement

Log in

Genomic insights into the carbohydrate catabolism of Cairneyella variabilis gen. nov. sp. nov., the first reports from a genome of an ericoid mycorrhizal fungus from the southern hemisphere

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

This paper describes a novel species of ericoid mycorrhizal fungus from Australia, Cairneyella variabilis, Midgley and Tran-Dinh, gen. nov. sp. nov. The genome of C. variabilis was sequenced and a draft genome assembled. The draft genome of C. variabilis is 52.4 Mbp in length, and to our knowledge, this is the first study to present a genome of an ericoid mycorrhizal fungus from the southern hemisphere. Using the SignalP and dbCAN bioinformatic pipelines, a study of the catabolic potential of C. variabilis was undertaken and showed genes for an array of degradative enzymes, most of which appear to be secreted from the hyphae, to access a suite of different carbon sources. Isolates of C. variabilis have been previously shown to utilise cellulose, carboxymethyl cellulose (CMC), cellobiose, xylan, pectin, starch and tannic acid for growth, and in the current study, putative enzymes for these processes were revealed. These enzymes likely play key roles in nutrient cycling and other edaphic processes in heathland environments. ITS phylogenetic analyses showed C. variabilis to be distinct from the fungi of the “Hymenoscyphus ericae aggregate”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552. doi:10.1080/10635150600755453

    Article  PubMed  Google Scholar 

  • Atlas of Living Australia (2013) http://www.ala.org.au/.

  • Baral H-O, Krieglsteiner L (2006) Hymenoscyphus subcarneus, a little known bryicolous discomycete found in the Białowieża National Park. Acta Mycol 41:11–20

    Article  Google Scholar 

  • Bending GD, Read DJ (1996a) Nitrogen mobilization from protein-polyphenol complex by ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1603–1612

    Article  CAS  Google Scholar 

  • Bending GD, Read J (1996b) Effects of the soluble polyphenol tannic on the activities of ericoid and ectomycorrhizal fungi. Soil Biol Biochem 28:1595–1602

    Article  CAS  Google Scholar 

  • Bougoure DS, Cairney JWG (2005a) Assemblages of ericoid mycorrhizal and other root-associated fungi from Epacris pulchella (Ericaceae) as determined by culturing and direct DNA extraction from roots. Environ Microbiol 7:819–827. doi:10.1111/j.1462-2920.2005.00755.x

    Article  CAS  PubMed  Google Scholar 

  • Bougoure DS, Cairney JWG (2005b) Fungi associated with hair roots of Rhododendron lochiae (Ericaceae) in an Australian tropical cloud forest revealed by culturing and culture-independent molecular methods. Environ Microbiol 7:1743–1754. doi:10.1111/j.1462-2920.2005.00919.x

    Article  CAS  PubMed  Google Scholar 

  • Burke RM, Cairney JWG (1997a) Carbohydrolase production by the ericoid mycorrhizal fungus Hymenoscyphus ericae under solid-state fermentation conditions. Mycol Res 101:1135–1139

    Article  CAS  Google Scholar 

  • Burke RM, Cairney JWG (1997b) Purification and characterization of a ß-l,4-endoxylanase from the ericoid mycorrhizal fungus Hymenoscyphus ericae. New Phytol 135:345–352

    Article  CAS  Google Scholar 

  • Cairney JWG, Ashford AE (2002) Biology of mycorrhizal associations of epacrids (Ericaceae). New Phytol 154:305–326

    Article  Google Scholar 

  • Cairney J, Meharg A (2003) Ericoid mycorrhiza: a partnership that exploits harsh edaphic conditions. Eur J Soil Sci 54:735–740. doi:10.1046/j.1365-2389.2003.00555.x

    Article  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552. doi:10.1093/oxfordjournals.molbev.a026334

    Article  CAS  PubMed  Google Scholar 

  • Chevenet F, Brun C, Bañuls A-L, Jacq B, Christen R (2006) TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinf 7:439. doi:10.1186/1471-2105-7-439

    Article  Google Scholar 

  • Curlevski NJ A, Chambers SM, Anderson IC, Cairney JWG (2009) Identical genotypes of an ericoid mycorrhiza-forming fungus occur in roots of Epacris pulchella (Ericaceae) and Leptospermum polygalifolium (Myrtaceae) in an Australian sclerophyll forest. FEMS Microbiol Ecol 67:411–420. doi:10.1111/j.1574-6941.2008.00637.x

    Article  PubMed  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard J-F, Guindon S, Lefort V, Lescot M, Claverie J-M, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469. doi:10.1093/nar/gkn180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acid Res 32:1792–1797. doi:10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbert HJ (2010) The biochemistry and structural biology of plant cell wall deconstruction. Plant Physiol 153:444–455. doi:10.1104/pp.110.156646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenfield P, Duesing K, Papanicolaou A, Bauer DC (2014) Blue: correcting sequencing errors using consensus and context. Bioinformatics. 1–8. doi:10.1093/bioinformatics/btu368

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. doi:10.1093/sysbio/syq010

    Article  CAS  PubMed  Google Scholar 

  • Halvorson JJ, Gollany HT, Kennedy AC, Hagerman AE, Gonzalez JM, Wuest SB (2012) Sorption of tannin and related phenolic compounds and effects on extraction of soluble-n in soil amended with several carbon sources. Agriculture 2:52–72. doi:10.3390/agriculture2010052

    Article  CAS  Google Scholar 

  • Hambleton S, Sigler L (2005) Meliniomyces, a new anamorph genus for root-associated fungi with phylogenetic affinities to Rhizoscyphus ericae (Hymenoscyphus ericae), Leotiomycetes. Stud Mycol 53:1–27. doi:10.3114/sim.53.1.1

    Article  Google Scholar 

  • Hoff KJ, Stanke M (2013) WebAUGUSTUS—a web service for training AUGUSTUS and predicting genes in eukaryotes. Nucleic Acids Res 41:W123–W128. doi:10.1093/nar/gkt418

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerley SJ, Read DJ (1998) The biology of mycorrhiza in the Ericaceae XX. Plant and mycorrhizal necromass as nitrogenous Hymenoscyphus ericae and its host. New Phytol 139:353–360

    Article  Google Scholar 

  • Kernan MJ, Finocchio AF (1983) A new discomycete associated with the roots of Monotropa uniflora (Ericaceae). Mycologia 75:916–920

    Article  Google Scholar 

  • Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A, Colpaert J, Copeland A, Costa MD, Doré J, Floudas D, Gay G, Girlanda M, Henrissat B, Herrmann S, Hess J, Högberg N, Johansson T, Khouja H-R, LaButti K, Lahrmann U, Levasseur A, Lindquist EA, Lipzen A, Marmeisse R et al (2015) Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47:410–415. doi:10.1038/ng.3223

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Chambers S, Cairney J (1998) Molecular diversity of ericoid mycorrhizal endophytes isolated from Woollsia pungens. New Phytol 140:145–153

    Article  CAS  Google Scholar 

  • Marx DH, Bryan WC (1975) Growth and ectomycorrhizal development of loblolly pine seedlings in fumigated soil infested with the fungal symbiont Pisolithus tinctorius. For Sci 21:245–254

    Article  Google Scholar 

  • Mclean CB, Anthony J, Collins RA, Steinke E, Lawrie A (1998) First synthesis of ericoid mycorrhizas in the Epacridaceae under axenic conditions. New Phytol 139:589–593

    Article  Google Scholar 

  • McLean C, Cunnington J, Lawrie A (1999) Molecular diversity within and between ericoid endophytes from the Ericaceae and Epacridaceae. New Phytol 144:351–358

    Article  CAS  Google Scholar 

  • Midgley DJ, Chambers SM, Cairney JWG (2002) Spatial distribution of fungal endophyte genotypes in a Woollsia pungens (Ericaceae) root system. Aust J Bot 50:559–565

    Article  CAS  Google Scholar 

  • Midgley DJ, Chambers SM, Cairney JWG (2004a) Distribution of ericoid mycorrhizal endophytes and root-associated fungi in neighbouring Ericaceae plants in the field. Plant Soil 259:137–151. doi:10.1023/B:PLSO.0000020947.13655.9f

    Article  CAS  Google Scholar 

  • Midgley DJ, Chambers SM, Cairney JWG (2004b) Inorganic and organic substrates as sources of nitrogen and phosphorus for multiple genotypes of two ericoid mycorrhizal fungal taxa from Woollsia pungens and Leucopogon parviflorus (Ericaceae). Aust J Bot 52:63–71

    Article  CAS  Google Scholar 

  • Midgley DJ, Chambers SM, Cairney JWG (2004c) Utilisation of carbon substrates by multiple genotypes of ericoid mycorrhizal fungal endophytes from eastern Australian Ericaceae. Mycorrhiza 14:245–251. doi:10.1007/s00572-003-0262-5

    Article  CAS  PubMed  Google Scholar 

  • Midgley DJ, Jordan LA, Saleeba JA, McGee PA (2006) Utilisation of carbon substrates by orchid and ericoid mycorrhizal fungi from Australian dry sclerophyll forests. Mycorrhiza 16:175–182. doi:10.1007/s00572-005-0029-2

    Article  CAS  PubMed  Google Scholar 

  • Palmer J, Horton B, Allaway W, Ashford A (2007) Growth stimulation of Woollsia pungens by a natural ericoid mycorrhizal fungal endophyte. Australas Mycol 26:1–8

    Google Scholar 

  • Peretto R, Bettini V, Bonfante P (1993) Evidence of two polygalacturonases produced by a mycorrhizal ericoid fungus during its saprophytic growth. FEMS Microbiol Lett 114:85–91. doi:10.1111/j.1574-6968.1993.tb06555.x

    Article  CAS  Google Scholar 

  • Perotto S, Peretto R, Faccio A, Schubert A, Bonfante P, Varma A (1995) Ericoid mycorrhizal fungi: cellular and molecular bases of their interactions with the host plant. Can J Bot 73:557–568. doi:10.1139/b95-296

    Article  Google Scholar 

  • Perotto S, Coisson JD, Perugini I, Cometti V, Bonfante P (1997) Production of pectin-degrading enzymes by ericoid mycorrhizal fungi. New Phytol 135:151–162

    Article  CAS  Google Scholar 

  • Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786. doi:10.1038/nmeth.1701

    Article  CAS  PubMed  Google Scholar 

  • Pitt JI, Hocking AD (2009) Fungi and food spoilage. Springer, Dordrecht, 519 p

    Book  Google Scholar 

  • Read DJ (1996) The structure and function of the ericoid mycorrhizal root. Ann Bot 77:365–374

    Article  CAS  Google Scholar 

  • Rice AV, Currah RS (2006) Oidiodendron maius: saprobe in Sphagnum peat, mutualist in ericaceous roots? In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer Berlin / Heidelberg, Berlin, pp 227–246

    Chapter  Google Scholar 

  • Vrålstad T, Fossheim T, Schumacher T (2000) Piceirhiza bicolorata—the ectomycorrhizal expression of the Hymenoscyphus ericae aggregate? New Phytol 145:549–563

    Article  Google Scholar 

  • Vrålstad T, Schumacher T, Taylor AFS (2002) Mycorrhizal synthesis between fungal strains of the Hymenoscyphus ericae aggregate and potential ectomycorrhizal and ericoid hosts. New Phytol 153:143–152. doi:10.1046/j.0028-646X.2001.00290.x

    Article  Google Scholar 

  • Williams AF, Chambers SM, Davies PW, Mclean CB, Cairney JWG (2004) Molecular investigation of sterile root-associated fungi from Epacris microphylla R. Br. (Ericaceae) and other epacrids at alpine, subalpine and coastal heathland sites. Australas Mycol 23:94–104

    Google Scholar 

  • Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y (2012) dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res 40:W445–W451. doi:10.1093/nar/gks479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Mr Mark Wilson for accessioning cultures into the FRR culture collection, and Dr. Mark Bradbury and Ms. Brodie Sutcliffe for their insightful comments on the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Midgley.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Midgley, D.J., Rosewarne, C.P., Greenfield, P. et al. Genomic insights into the carbohydrate catabolism of Cairneyella variabilis gen. nov. sp. nov., the first reports from a genome of an ericoid mycorrhizal fungus from the southern hemisphere. Mycorrhiza 26, 345–352 (2016). https://doi.org/10.1007/s00572-016-0683-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-016-0683-6

Keywords