, Volume 26, Issue 5, pp 389–399 | Cite as

Temporal changes of bacterial communities in the Tuber melanosporum ectomycorrhizosphere during ascocarp development

  • Aurélie Deveau
  • Sanjay Antony-Babu
  • François Le Tacon
  • Christophe Robin
  • Pascale Frey-Klett
  • Stéphane Uroz
Original Article


Ectomycorrhizae create a multitrophic ecosystem formed by the association between tree roots, mycelium of the ectomycorrhizal fungus, and a complex microbiome. Despite their importance in the host tree’s physiology and in the functioning of the ectomycorrhizal symbiosis, detailed studies on ectomycorrhiza-associated bacterial community composition and their temporal dynamics are rare. Our objective was to investigate the composition and dynamics of Tuber melanosporum ectomycorrhiza-associated bacterial communities from summer to winter seasons in a Corylus avellana tree plantation. We used 16S ribosomal RNA (rRNA)-based pyrosequencing to compare the bacterial community structure and the richness in T. melanosporum’s ectomycorrhizae with those of the bulk soil. The T. melanosporum ectomycorrhizae harbored distinct bacterial communities from those of the bulk soil, with an enrichment in Alpha- and Gamma-proteobacteria. In contrast to the bacterial communities of truffle ascocarps that vastly varies in composition and richness during the maturation of the fruiting body and to those from the bulk soil, T. melanosporum ectomycorrhiza-associated bacterial community composition stayed rather stable from September to January. Our results fit with a recent finding from the same experimental site at the same period that a continuous supply of carbohydrates and nitrogen occurs from ectomycorrhizae to the fruiting bodies during the maturation of the ascocarps. We propose that this creates a stable niche in the ectomycorrhizosphere although the phenology of the tree changes.


Tuber melanosporum Bacterial communities Temporal changes Soil-ectomycorrhizae interface Ectomycorrhizosphere 16S rRNA-based pyrosequencing 



This work was supported by the French National Research Agency through the SYSTRUF project and the Laboratory of Excellence ARBRE (ANR-12- LABXARBRE-01). Thanks are due to our dog Biela for the ascocarp harvests.

Supplementary material

572_2015_679_MOESM1_ESM.docx (134 kb)
ESM 1 (DOCX 133 kb)
572_2015_679_MOESM2_ESM.gif (154 kb)
ESM 2 Figure S1. Multivariate analyses of the bacterial communities associated with T. melanosporum ectomycorrhizal root tip, bulk soil and ascocarps (peridium and gleba) in November (A), December (B) and January (C). MBS: bulk soil, MYCO: ectomycorrhizal root tip, AIN: gleba, AOUT: peridium. (GIF 154 kb)


  1. Antony-Babu S, Murat C, Deveau A et al (2013) An improved method compatible with metagenomic analyses to extract genomic DNA from soils in Tuber melanosporum orchards. J Appl Microbiol 115:163–170CrossRefPubMedGoogle Scholar
  2. Antony-Babu S, Deveau A, Van Nostrand JD et al (2014) Black truffle-associated bacterial communities during the development and maturation of Tuber melanosporum ascocarps and putative functional roles. Environ Microbiol 16:2831–2847. doi: 10.1111/1462-2920.12294 CrossRefPubMedGoogle Scholar
  3. Assigbetse K, Gueye M, Thioulouse J, Duponnois R (2005) Soil bacterial diversity responses to root colonization by an ectomycorrhizal fungus are not root-growth-dependent. Microb Ecol 50:350–359. doi: 10.1007/s00248-004-0229-x CrossRefPubMedGoogle Scholar
  4. Barbieri E, Bertini L, Rossi I et al (2005) New evidence for bacterial diversity in the ascoma of the ectomycorrhizal fungus Tuber borchii Vittad. FEMS Microbiol Lett 247:23–35CrossRefPubMedGoogle Scholar
  5. Barbieri E, Ceccaroli P, Saltarelli R et al (2010) New evidence for nitrogen fixation within the Italian white truffle Tuber magnatum. Fungal Biol 114:936–942CrossRefPubMedGoogle Scholar
  6. Barke J, Seipke RF, Gruschow S et al (2010) A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol 8:109. doi: 10.1186/1741-7007-8-109 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brockett BFT, Prescott CE, Grayston SJ (2012) Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biol Biochem 44:9–20. doi: 10.1016/j.soilbio.2011.09.003 CrossRefGoogle Scholar
  8. Bulgarelli D, Rott M, Schlaeppi K et al (2012) Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:91–95CrossRefPubMedGoogle Scholar
  9. Burke DJ, Dunham SM, Kretzer AM (2008) Molecular analysis of bacterial communities associated with the roots of Douglas fir (Pseudotsuga menziesii) colonized by different ectomycorrhizal fungi. FEMS Microbiol Ecol 65:299–309CrossRefPubMedGoogle Scholar
  10. Calvaruso C, Turpault MP, Leclerc E et al (2010) Influence of forest trees on the distribution of mineral weathering-associated bacterial communities of the Scleroderma citrinum mycorrhizosphere. Appl Environ Microbiol 76:4780–4787. doi: 10.1128/AEM.03040-09 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Churchland C, Grayston SJ (2014) Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Front Microbiol 5:1–20. doi: 10.3389/fmicb.2014.00261 CrossRefGoogle Scholar
  12. Cleveland CC, Nemergut DR, Schmidt SK, Townsend AR (2006) Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82:229–240. doi: 10.1007/s10533-006-9065-z CrossRefGoogle Scholar
  13. Cole JR, Wang Q, Cardenas E et al (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145CrossRefPubMedGoogle Scholar
  14. Collignon C, Uroz S, Turpault M-P, Frey-Klett P (2011) Seasons differently impact the structure of mineral weathering bacterial communities in beech and spruce stands. Soil Biol Biochem 43:2012–2022. doi: 10.1016/j.soilbio.2011.05.008 CrossRefGoogle Scholar
  15. Courty P-E, Buée M, Diedhiou AG et al (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42:679–698CrossRefGoogle Scholar
  16. Delmont TO, Robe P, Cecillon S et al (2011) Accessing the soil metagenome for studies of microbial diversity. Appl Environ Microbiol 77:1315–1324. doi: 10.1128/AEM.01526-10 CrossRefPubMedGoogle Scholar
  17. Deveau A, Brulé C, Palin B et al (2010) Role of fungal trehalose and bacterial thiamine in the improved survival and growth of the ectomycorrhizal fungus Laccaria bicolor S238N and the helper bacterium Pseudomonas fluorescens BBc6R8. Environ Microbiol Rep 2:560–568. doi: 10.1111/j.1758-2229.2010.00145.x CrossRefPubMedGoogle Scholar
  18. Epron D, Ngao J, Dannoura M et al (2011) Seasonal variations of belowground carbon transfer assessed by in situ 13 CO 2 pulse labelling of trees. Biogeosciences 8:1153–1168. doi: 10.5194/bg-8-1153-2011 CrossRefGoogle Scholar
  19. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364CrossRefPubMedGoogle Scholar
  20. Frey-Klett P, Chavatte M, Clausse ML et al (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328CrossRefPubMedGoogle Scholar
  21. Goh C-H, Veliz Vallejos DF, Nicotra AB, Mathesius U (2013) The impact of beneficial plant-associated microbes on plant phenotypic plasticity. J Chem Ecol 39:826–839. doi: 10.1007/s10886-013-0326-8 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Gryndler M, Soukupová L, Hršelová H et al (2013) A quest for indigenous truffle helper prokaryotes. Environ Microbiol Rep 5:346–352. doi: 10.1111/1758-2229.12014 CrossRefPubMedGoogle Scholar
  23. Izumi H, Finlay RD (2011) Ectomycorrhizal roots select distinctive bacterial and ascomycete communities in Swedish subarctic forests. Environ Microbiol 13:819–830. doi: 10.1111/j.1462-2920.2010.02393.x CrossRefPubMedGoogle Scholar
  24. Izumi H, Moore E, Killham K et al (2007) Characterisation of endobacterial communities in ectomycorrhizas by DNA- and RNA-based molecular methods. Soil Biol Biochem 39:891–899. doi: 10.1016/j.soilbio.2006.10.011 CrossRefGoogle Scholar
  25. Izumi H, Cairney JWG, Killham K et al (2008) Bacteria associated with ectomycorrhizas of slash pine (Pinus elliottii) in south-eastern Queensland, Australia. FEMS Microbiol Lett 282:196–204. doi: 10.1111/j.1574-6968.2008.01122.x CrossRefPubMedGoogle Scholar
  26. Kataoka R, Taniguchi T, Ooshima H, Futai K (2008) Comparison of the bacterial communities established on the mycorrhizae formed on Pinus thunbergii root tips by eight species of fungi. Plant Soil 304:267–275. doi: 10.1007/s11104-008-9548-x CrossRefGoogle Scholar
  27. Le Tacon F, Zeller B, Plain C et al (2013) Carbon transfer from the host to Tuber melanosporum mycorrhizas and ascocarps followed using a 13C pulse-labeling technique. PLoS One 8:e64626. doi: 10.1371/journal.pone.0064626 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Le Tacon F, Rubini A, Murat C, et al. (2015a) Certainties and uncertainties about the life cycle of the Périgord black truffle (Tuber melanosporum Vittad.). Ann For Sci. doi:  10.1007/s13595-015-0461-1
  29. Le Tacon F, Zeller B, Plain C, et al. (2015b) Study of nitrogen and carbon transfer from soil organic matter to Tuber melanosporum mycorrhizas and ascocarps using 15N and 13C soil labelling and whole-genome oligoarrays. Plant Soil. doi:  10.1007/s11104-015-2557-7
  30. Lebeis SL (2014) The potential for give and take in plant-microbiome relationships. Front Plant Sci 5:287. doi: 10.3389/fpls.2014.00287 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Linderman R (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371Google Scholar
  32. López-Mondéjar R, Voříšková J, Větrovský T, Baldrian P (2015) The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics. Soil Biol Biochem 87:43–50. doi: 10.1016/j.soilbio.2015.04.008 CrossRefGoogle Scholar
  33. Martin F, Canet D, Marchal J, Brondeau J (1984) In vivo natural-abundance 13C nuclear magnetic resonance studies of living ectomycorrhizal fungi. Plant Physiol 75:151–153CrossRefPubMedPubMedCentralGoogle Scholar
  34. Martin F, Canet D, Marchal J (1985) 13C nuclear magnetic resonance study of mannitol cycle and trehalose synthesis during glucose utilization by the ectomycorrhizal Cenococcum graniforme. Plant Physiol 77:499–502CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mello A, Ding GC, Piceno YM et al (2013) Truffle brulés have an impact on the diversity of soil bacterial communities. PLoS One 8(4):e61945. doi: 10.1371/journal.pone.0061945 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Meyer F, Paarmann D, D’Souza M et al (2008) The metagenomics RAST server—a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386. doi: 10.1186/1471-2105-9-386 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mogge B, Loferer C, Agerer R et al (2000) Bacterial community structure and colonization patterns of Fagus sylvatica L. ectomycorrhizospheres as determined by fluorescence in situ hybridization and confocal laser scanning microscopy. Mycorrhiza 9:271–278. doi: 10.1007/PL00009991 CrossRefGoogle Scholar
  38. Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148:257–266. doi: 10.1099/00221287-148-1-257 CrossRefPubMedGoogle Scholar
  39. Oksanen J, Blanchet F, Kindt R, et al. (2015) Vegan: Community Ecology Package.Google Scholar
  40. On SLW, Atabay HI, Corry JEL et al (1998) Emended description of Campylobacter sputorum and revision of its infrasubspecific (biovar) divisions, including C. sputorum biovar paraureolyticus, a urease-producing variant from cattle and humans. Int J Syst Bacteriol 48:195–206. doi: 10.1099/00207713-48-1-195 CrossRefPubMedGoogle Scholar
  41. Panke-Buisse K, Poole AC, Goodrich JK et al (2015) Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J 9:980–989. doi: 10.1038/ismej.2014.196 CrossRefPubMedGoogle Scholar
  42. Paolocci F (1999) Rapid molecular approach for a reliable identification of Tuber spp. ectomycorrhizae. FEMS Microbiol Ecol 28:23–30. doi: 10.1016/S0168-6496(98)00088-9 CrossRefGoogle Scholar
  43. Porca E, Jurado V, Žgur-Bertok D et al (2012) Comparative analysis of yellow microbial communities growing on the walls of geographically distinct caves indicates a common core of microorganisms involved in their formation. FEMS Microbiol Ecol 81:255–266. doi: 10.1111/j.1574-6941.2012.01383.x CrossRefPubMedGoogle Scholar
  44. Rädecker N, Pogoreutz C, Voolstra CR et al (2015) Nitrogen cycling in corals: the key to understanding holobiont functioning? Trends Microbiol 23:490–497. doi: 10.1016/j.tim.2015.03.008 CrossRefPubMedGoogle Scholar
  45. Rambelli A (1973) The rhizosphere of mycorrhizae. In: Marks G, Kozlowski T (eds) Ectomycorrhizae their Ecol. Physiol. Academic Press, New York, pp 299–343Google Scholar
  46. Rasche F, Knapp D, Kaiser C et al (2011) Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. ISME J 5:389–402. doi: 10.1038/ismej.2010.138 CrossRefPubMedGoogle Scholar
  47. Sbrana C, Agnolucci M, Bedini S et al (2002) Diversity of culturable bacterial populations associated to Tuber borchii ectomycorrhizas and their activity on T. borchii mycelial growth. FEMS Microbiol Lett 211:195–201. doi: 10.1016/S0378-1097(02)00712-7 CrossRefPubMedGoogle Scholar
  48. Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi: 10.1128/AEM.01541-09 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Schoenian I, Spiteller M, Ghaste M et al (2011) Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc Natl Acad Sci U S A 108:1955–1960. doi: 10.1073/pnas.1008441108 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Schommer NN, Gallo RL (2013) Structure and function of the human skin microbiome. Trends Microbiol 21:660–668. doi: 10.1016/j.tim.2013.10.001 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Shafquat A, Joice R, Simmons SL, Huttenhower C (2014) Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol 22:261–266. doi: 10.1016/j.tim.2014.01.011 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Smith S, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic, LondonGoogle Scholar
  53. Stomeo F, Portillo MC, Gonzalez JM et al (2008) Pseudonocardia in white colonizations in two caves with Paleolithic paintings. Int Biodeterior Biodegrad 62:483–486. doi: 10.1016/j.ibiod.2007.12.011 CrossRefGoogle Scholar
  54. Stres B, Danevcic T, Pal L et al (2008) Influence of temperature and soil water content on bacterial, archaeal and denitrifying microbial communities in drained fen grassland soil microcosms. FEMS Microbiol Ecol 66:110–122. doi: 10.1111/j.1574-6941.2008.00555.x CrossRefPubMedGoogle Scholar
  55. Tabuchi H, Kato K, Nioh I (2008) Season and soil management affect soil microbial communities estimated using phospholipid fatty acid analysis in a continuous cabbage (Brassica oleracea var. capitata) cropping system. Soil Sci Plant Nutr 54:369–378. doi: 10.1111/j.1747-0765.2008.00242.x CrossRefGoogle Scholar
  56. Uroz S, Calvaruso C, Turpault MP et al (2007) Effect of the mycorrhizosphere on the genotypic and metabolic diversity of the bacterial communities involved in mineral weathering in a forest soil. Appl Environ Microbiol 73:3019–3027. doi: 10.1128/AEM.00121-07 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Uroz S, Oger P, Morin E, Frey-Klett P (2012) Distinct ectomycorrhizospheres share similar bacterial communities as revealed by pyrosequencing-based analysis of 16S rRNA genes. Appl Environ Microbiol 78:3020–3024. doi: 10.1128/AEM.06742-11 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Uroz S, Courty PE, Pierrat JC et al (2013) Functional profiling and distribution of the forest soil bacterial communities along the soil mycorrhizosphere continuum. Microb Ecol 66:404–415. doi: 10.1007/s00248-013-0199-y CrossRefPubMedGoogle Scholar
  59. Vik U, Logares R, Blaalid R et al (2013) Different bacterial communities in ectomycorrhizae and surrounding soil. Sci Rep 3:3471. doi: 10.1038/srep03471 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Yano JM, Yu K, Donaldson GP et al (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161:264–276. doi: 10.1016/j.cell.2015.02.047 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Aurélie Deveau
    • 1
    • 2
  • Sanjay Antony-Babu
    • 1
    • 2
    • 6
  • François Le Tacon
    • 1
    • 2
  • Christophe Robin
    • 4
    • 5
  • Pascale Frey-Klett
    • 1
    • 2
  • Stéphane Uroz
    • 1
    • 2
    • 3
  1. 1.UMR1136 INRA Université de Lorraine, Interactions Arbres – MicroorganismesChampenouxFrance
  2. 2.Université de Lorraine, UMR1136, Interactions Arbres – MicroorganismesVandœuvre-lès-NancyFrance
  3. 3.INRA, UR1138, Biogéochimie des écosystèmes forestiersChampenouxFrance
  4. 4.Université de Lorraine, UMR 1121, Agronomie & Environnement, Nancy-ColmarVandœuvre-lès-NancyFrance
  5. 5.INRA, UMR 1121, Agronomie & Environnement, Nancy-Colmar, Centre INRA de Nancy-LorraineVandœuvre-lès-NancyFrance
  6. 6.Department of Food Science and TechnologyUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations