Skip to main content
Log in

Rhizophagus irregularis MUCL 41833 can colonize and improve P uptake of Plantago lanceolata after exposure to ionizing gamma radiation in root organ culture

  • Short Note
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Long-lived radionuclides such as 90Sr and 137Cs can be naturally or accidentally deposited in the upper soil layers where they emit β/γ radiation. Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can accumulate and transfer radionuclides from soil to plant, but there have been no studies on the direct impact of ionizing radiation on AMF. In this study, root organ cultures of the AMF Rhizophagus irregularis MUCL 41833 were exposed to 15.37, 30.35, and 113.03 Gy gamma radiation from a 137Cs source. Exposed spores were subsequently inoculated to Plantago lanceolata seedlings in pots, and root colonization and P uptake evaluated. P. lanceolata seedlings inoculated with non-irradiated AMF spores or with spores irradiated with up to 30.35 Gy gamma radiation had similar levels of root colonization. Spores irradiated with 113.03 Gy gamma radiation failed to colonize P. lanceolata roots. P content of plants inoculated with non-irradiated spores or of plants inoculated with spores irradiated with up to 30.35 Gy gamma radiation was higher than in non-mycorrhizal plants or plants inoculated with spores irradiated with 113.03 Gy gamma radiation. These results demonstrate that spores of R. irregularis MUCL 41833 are tolerant to chronic ionizing radiation at high doses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Brown JE, Alfonso B, Avila R, Beresford NA, Copplestone D, Pröhl G, Ulanovsky A (2008) The ERICA Tool. J Environ Radioact 99:1371–1383

    Article  CAS  PubMed  Google Scholar 

  • Dadachova E, Casadevall A (2008) Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbiol 11:525–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dadachova E, Bryan RA, Howell RC, Schweitzer PA, Nosanchuk JD, Casadevall A (2007) The radioprotective properties of fungal melanin are a function of its chemical composition, stable radical presence and spatial arrangement. Pigment Cell Melanoma Res 21:192–199

    Article  Google Scholar 

  • Declerck S, Strullu DG, Plenchette C (1998) Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90:579–585

    Article  Google Scholar 

  • Declerck S, Dupré de Boulois H, Bivort C, Delvaux B (2003) Extraradical mycelium of the arbuscular mycorrhizal fungus Glomus lamellosum can take up, accumulate and translocate radiocaesium under root-organ culture conditions. Environ Microbiol 5:510–516

    Article  PubMed  Google Scholar 

  • Dighton J, Tugay T, Zhdanova N (2008) Fungi and ionizing radiation from radionuclides. FEMS Microbiol Lett 281:109–120

    Article  CAS  PubMed  Google Scholar 

  • Doner LW, Bécard G (1991) Solubilization of gellan gels by chelation of cations. Biotechnol Tech 5:25–28

    Article  CAS  Google Scholar 

  • Drissner J, Burmann W, Enslin F, Heider R, Klemt E, Miller R, Schick G, Zibold G (1998) Availability of caesium radionuclides to plants–classification of soils and role of mycorrhiza. J Radioact 41:19–32

    Article  CAS  Google Scholar 

  • Dupré de Boulois H, Delvaux B, Declerck S (2005) Contribution of extraradical mycelium and roots to radiocaesium uptake and translocation by arbuscular mycorrhizal carrot roots under root organ culture conditions. Environ Pollut 134:515–524

    Article  PubMed  Google Scholar 

  • Dupré de Boulois H, Voets L, Delvaux B, Jakobsen I, Declerck S (2006) Transport of radiocaesium by arbuscular mycorrhizal fungi to Medicago truncatula under in vitro conditions. Environ Microbiol 8:1926–1934

    Article  Google Scholar 

  • Dupré de Boulois H, Joner EJ, Leyval C, Jakobsen I, Chen BD, Roos P, Thiry Y, Rufyikiri G, Delvaux B, Declerck S (2008) Role and influence of mycorrhizal fungi on radiocesium accumulation by plants. J Environ Radioact 99:785–800

    Article  PubMed  Google Scholar 

  • Entry JA, Watrudb LS, Reeves M (1999) Accumulation of 137Cs and 90Sr from contaminated soil by three grass species inoculated with mycorrhizal fungi. Environ Pollut 104:449–457

    Article  CAS  Google Scholar 

  • Garnier-Laplace J, Geras’kin S, Della-Vedova C, Beaugelin-Seiller K, Hinton T, Real A, Oudalova A (2013) Are radiosensitivity data derived from natural field conditions consistent with data from controlled exposures? A case study of Chernobyl wildlife chronically exposed to low dose rates. J Environ Radioact 121:12–21

    Article  CAS  PubMed  Google Scholar 

  • Gyuricza V, Declerck S, Dupré de Boulois H (2010a) Arbuscular mycorrhizal fungi decrease radiocesium accumulation in Medicago truncatula. J Environ Radioact 101:591–596

    Article  CAS  PubMed  Google Scholar 

  • Gyuricza V, Dupré de Boulois H, Declerck S (2010b) Effect of potassium and phosphorus on the transport of radiocesium by arbuscular mycorrhizal fungi. J Environ Radioact 101:482–487

    Article  CAS  PubMed  Google Scholar 

  • Gyuricza V, Thiry Y, Wannijn J, Declerck S, Dupré de Boulois H (2010c) Radiocesium transfer between Medicago truncatula plants via a common mycorrhizal network. Environ Microbiol 12:2180–2189

    CAS  PubMed  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Station Circ 347:1–32

    Google Scholar 

  • IJdo M, Schtickzelle N, Cranenbrouck S, Declerck S (2010) Do arbuscular mycorrhizal fungi with contrasting life–history strategies differ in their responses to repeated defoliation? FEMS Microbiol Ecol 72:114–122

    Article  CAS  PubMed  Google Scholar 

  • Jones HE, West HM, Chamberlain PM, Parekh NR, Beresford NA, Crout NMJ (2004) Effects of gamma radiation on Holcus lanatus (Yorkshire fog grass) and associated soil microorganisms. J Environ Radioact 74:57–71

    Article  CAS  PubMed  Google Scholar 

  • Konopleva I, Klemt E, Konoplev A, Zibold G (2009) Migration and bioavailability of 137Cs in forest soil of southern Germany. J Environ Radioact 100:315–321

    Article  CAS  PubMed  Google Scholar 

  • Kruyts N, Delvaux B (2002) Soil organic horizons as a major source for radiocaesium biorecycling in forest ecosystems. J Environ Radioact 58:175–190

    Article  CAS  PubMed  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Meredith P, Sarna T (2006) The physical and chemical properties of eumelanin. Pigment Cell Res 19:572–594

    Article  CAS  PubMed  Google Scholar 

  • Ministry of Agriculture, Forestry and Fisheries of Japan (2012) Development of maps of the radionuclide concentration in agricultural farmland soils. Available from: http://www.s.affrc.go.jp/docs/map/240323.htm (in Japanese). Accessed in March 2015

  • Niedrée B, Berns AE, Vereecken H, Burauel P (2013) Do Chernobyl-like contaminations with 137Cs and 90Sr affect the microbial community, the fungal biomass and the composition of soil organic matter in soil. J Environ Radioact 118:21–29

    Article  PubMed  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Rafferty B, Brenan M, Dawson D, Dowding D (2000) Mechanisms of Cs-137 migration in coniferous forest soils. J Environ Radioact 48:131–143

    Article  CAS  Google Scholar 

  • Ramola RC, Gusain GS, Badoni M, Prasad Y, Prasad G, Ramachandran TV (2008) 226Ra, 232Th and 40K contents in soil samples from Garhwal Himalaya, India and its radiological implications. J Radiol Prot 28:379–385

    Article  CAS  PubMed  Google Scholar 

  • Ritz C, Streibig J (2005) Bioassay analysis using R. J Stat Softw 12:1–22

    Article  Google Scholar 

  • Rufyikiri G, Thiry Y, Wang L, Delvaux B, Declerck S (2002) Uranium uptake and translocation by the arbuscular mycorrhizal fungus, Glomus intraradices, under root-organ culture conditions. New Phytol 156:275–281

    Article  CAS  Google Scholar 

  • Rufyikiri G, Thiry Y, Declerck S (2003) Contribution of hyphae and roots to uranium uptake and translocation by arbuscular mycorrhizal carrot roots under root-organ culture conditions. New Phytol 158:391–399

    Article  CAS  Google Scholar 

  • Rufyikiri G, Declerck S, Thiry Y (2004) Comparison of 233U and 33P uptake and translocation by the arbuscular mycorrhizal fungus Glomus intraradices in root organ cultures. Mycorrhiza 14:203–207

    Article  PubMed  Google Scholar 

  • Scheffer F, Schachtschabel P, Blume H-P (2002) Lehrbruch der Bodenkunde. Spektrum Akdemischer Verlag, Berlin

    Google Scholar 

  • Stoklosa A, Madani H (2013) Effect of ultraviolet-B radiation on arbuscular mycorrhizal colonization of two rangeland weeds. Afr J Microbiol Res 7:5484–5488

    Google Scholar 

  • UNSCEAR (2000) Sources and effects of ionizing radiations. Report to the General Assembly, with Scientific Annexes, Volume 1: effects. United Nations Scientific Committee on the Effects of Atomic Radiation, New York

  • van de Staaij J, Rozema J, van Beem A, Aerts R (2001) Increased solar UV-B radiation may reduce infection by arbuscular mycorrhizal fungi (AMF) in dune grassland plants: evidence from five years of field exposure. Plant Ecol 154:171–177

    Google Scholar 

  • van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Zhu YG, Shaw G (2000) Soil contamination with radionuclides and potential remediation. Chemosphere 41:121–128

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

DK received a mobility grant attributed by the Belgian Federal Science Policy and co-financed by the Marie Curie Actions PCOFUND-GA-2009-246540 of the European Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Kothamasi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kothamasi, D., Wannijn, J., van Hees, M. et al. Rhizophagus irregularis MUCL 41833 can colonize and improve P uptake of Plantago lanceolata after exposure to ionizing gamma radiation in root organ culture. Mycorrhiza 26, 257–262 (2016). https://doi.org/10.1007/s00572-015-0664-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-015-0664-1

Keywords

Navigation