Skip to main content
Log in

Evidence for functional redundancy in arbuscular mycorrhizal fungi and implications for agroecosystem management

  • Short Note
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal (AM) fungi provide benefits to host plants and show functional diversity, with evidence of functional trait conservation at the family level. Diverse communities of AM fungi ought therefore to provide increased benefits to the host, with implications for the management of sustainable agroecosystems. However, this is often not evident in the literature, with diversity saturation at low species number. Growth and nutrient uptake were measured in onions in the glasshouse on AM-free phosphorus (P)-poor soil, inoculated with between one and seven species of AM fungi in all possible combinations. Inoculation with AM fungi increased shoot dry weight as well as P and copper concentrations in shoots but reduced the concentration of potassium and sulphur. There was little evidence of increased benefit from high AM fungal diversity, and increasing diversity beyond three species did not result in significantly higher shoot weight or P or Cu concentrations. Species of Glomeraceae had the greatest impact on growth and nutrient uptake, while species of Acaulospora and Racocetra did not have a significant impact. Failure to show a benefit from high AM fungal diversity in this and other studies may be the result of experimental conditions, with the benefits of AM fungal diversity only becoming apparent when the host plant is faced with multiple stress factors. Replicating the complex interactions between AM fungi, the host plant and their environment in the laboratory in order to fully understand these interactions is a major challenge to AM research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Afkhami ME, Rudgers JA, Stachowicz JJ (2014) Multiple mutualist effects: conflict and synergy in multispecies mutualisms. Ecology 95:833–844

    Article  PubMed  Google Scholar 

  • Aurélien R, Alexandre C, Caroline A, Sanders IR (2013) Relatedness among arbuscular mycorrhizal fungi drives plant growth and intraspecific fungal coexistence. ISME J 7:2137–2146

    Article  CAS  Google Scholar 

  • Bennett AE, Bever JD (2007) Mycorrhizal species differentially alter plant growth and response to herbivory. Ecology 88:210–218

    Article  PubMed  Google Scholar 

  • Brussaard L, Ruiter PC, de Brown GG (2007) Soil biodiversity for agricultural sustainability. Agric Ecosyst Environ 121:233–244

    Article  Google Scholar 

  • Dai M, Hamel C, Bainard LD, Arnaud MS, Grant CA, Lupwayi NZ, Malhi SS, Lemke R (2014) Negative and positive contributions of arbuscular mycorrhizal fungal taxa to wheat production and nutrient uptake efficiency in organic and conventional systems in the Canadian prairie. Soil Biol Biochem 74:156–166

    Article  CAS  Google Scholar 

  • Dickie IA, Alexander I, Lennon S, Öpik M, Selosse MA, van der Heijden MGA, Martin FM (2015) Evolving insights to understanding mycorrhizas. New Phytol 205:1369–1374

    Article  PubMed  CAS  Google Scholar 

  • Galvan GA, Paradi I, Burger K, Baar J, Kuyper TW, Scholten OE, Kik C (2009) Molecular diversity of arbuscular mycorrhizal fungi in onion roots from organic and conventional farming systems in the Netherlands. Mycorrhiza 19:317–328

    Article  PubMed  PubMed Central  Google Scholar 

  • VSN International (2013) GenStat for Windows (13th edn). VSN International, Hemel Hempstead

  • Gosling P, Ozaki A, Jones J, Turner M, Rayns F, Bending GD (2010) Organic management of tilled agricultural soils results in a rapid increase in colonisation potential and spore populations of arbuscular mycorrhizal fungi. Agric Ecosyst Environ 139:273–279

    Article  Google Scholar 

  • Gosling P, Mead A, Proctor M, Hammond J, Bending GD (2013) Contrasting arbuscular mycorrhizal communities colonising different host plants show a similar response to a soil phosphorus concentration gradient. New Phytol 198:546–556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gosling P, Proctor M, Jones J, Bending GD (2014) Distribution and diversity of Paraglomus spp in tilled agricultural soils. Mycorrhiza 24:1–11

    Article  PubMed  Google Scholar 

  • Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycol Res 95:1160–1162

    Article  Google Scholar 

  • Hart MM, Forsythe JA (2012) Using arbuscular mycorrhizal fungi to improve the nutrient quality of crops; nutritional benefits in addition to phosphorus. Sci Hort Amsterdam 148:206–214

    Article  CAS  Google Scholar 

  • Hector A, Bagchi R (2007) Biodiversity and ecosystem multifunctionality. Nature 7150:188–191

    Article  CAS  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431

    Article  PubMed  CAS  Google Scholar 

  • Hijri I, Sykorova Z, Oehl F, Ineichen K, Mader P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289

    Article  PubMed  CAS  Google Scholar 

  • Hole DG, Perkins AJ, Wilson JD, Alexander IH, Grice F, Evans AD (2005) Does organic farming benefit biodiversity? Biol Conserv 122:113–130

    Article  Google Scholar 

  • Jansa J, Smith FA, Smith SE (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789

    Article  PubMed  CAS  Google Scholar 

  • Johnson D (2015) Priorities for research on priority effects. New Phytol 205:1375–1377

    Article  PubMed  Google Scholar 

  • Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  • Koide RT, Li M (1989) Appropriate controls for vesicular-arbuscular mycorrhiza research. New Phytol 111:35–44

    Article  Google Scholar 

  • Lekberg Y, Koide RT (2014) Integrating physiological community and evolutionary perspectives on the arbuscular mycorrhizal symbiosis. Botany 92:241–251

    Article  CAS  Google Scholar 

  • Lekberg Y, Koide RT, Rohr JR, Aldrich-Wolfe L, Morton JB (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95:95–105

    Article  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  PubMed  CAS  Google Scholar 

  • McDonald JH (2009) Handbook of biological statistics, 2nd edn. Sparky House Publishing, Baltimore

    Google Scholar 

  • McGonigle TP, Millers MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–502

    Article  Google Scholar 

  • Munkvold L, Kjoller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364

    Article  Google Scholar 

  • Oehl F, Sieverding E, Mader P, Dubois D, Ineichen K, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583

    Article  PubMed  Google Scholar 

  • Oehl F, de Silva GA, Goto BT, Sieverding E (2011) Glomeromycota: three new genera and gloomed species reorganized. Mycotaxon 116:75–120

    Article  Google Scholar 

  • Olsen SR, Cole CV, Watanabe FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium carbonate. Circular no. 939. US Department of Agriculture, Washington, D.C.

  • Opik M, Metsis M, Daniell TJ, Zobel M, Moora M (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437

    Article  PubMed  CAS  Google Scholar 

  • Pellegrino E, Bedini S, Avio L, Bonari E, Giovannetti M (2011) Field inoculation effectiveness of native and exotic arbuscular mycorrhizal fungi in a Mediterranean agricultural soil. Soil Biol Biochem 43:367–376

    Article  CAS  Google Scholar 

  • Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig M, Maherali H (2009) Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc R Soc Lond B Biol 276:4237–4245

    Article  Google Scholar 

  • Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531

    Article  PubMed  Google Scholar 

  • Rodriguez A, Sanders IR (2015) The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J 9:1053–1061

    Article  PubMed  PubMed Central  Google Scholar 

  • Schlapfer F, Schmid B (1999) Ecosystem effects of biodiversity: a classification of hypotheses and exploration of empirical results. Ecol Appl 9:893–912

    Article  Google Scholar 

  • Schultea RPO, Melland AR, Fenton O, Herlihy M, Richards K, Jordan P (2010) Modelling soil phosphorus decline: expectations of water framework directive policies. Environ Sci Pol 13:472–484

    Article  CAS  Google Scholar 

  • Schüßler A, Walker C (2010) The Glomeromycota: a species list with new families and genera. Accessed 18 February 2015

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Sikes BA, Cottenie K, Klironomos JN (2009) Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J Ecol 97:1274–1280

    Article  Google Scholar 

  • Tarbell TJ, Koske RE (2007) Evaluation of commercial arbuscular mycorrhizal inocula in a sand/peat medium. Mycorrhiza 18:51–56

    Article  PubMed  CAS  Google Scholar 

  • Tian H, Drijber RA, Li XL, Miller DN, Wienhold BJ (2013) Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (Zea mays L). Mycorrhiza 23:507–514

    Article  PubMed  CAS  Google Scholar 

  • Van der Gast C, Gosling P, Tiwari B, Bending GD (2011) Spatial scaling of arbuscular mycorrhizal fungal diversity is affected by farming practice. Environ Microbiol 13:241–249

    Article  PubMed  Google Scholar 

  • van Ruijven J, Berendse F (2005) Diversity-productivity relationships: initial effects, long-term patterns and underlying mechanisms. Proc Natl Acad Sci U S A 102:695–700

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verbruggen E, Kiers ET (2010) Evolutionary ecology of mycorrhizal functional diversity in agricultural systems. Evol Appl 3:547–560

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogelsang KM, Reynolds HL, Bever JD (2006) Mycorrhizal fungal identity and richness determine the diversity and productivity of a tallgrass prairie system. New Phytol 172:554–562

    Article  PubMed  Google Scholar 

  • Vosatka M, Latr A, Gianinazzi S, Albrechtova J (2012) Development of arbuscular mycorrhizal biotechnology and industry: current achievements and bottlenecks. Symbiosis 58:29–37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to the UK Department of Food, Environment and Rural Affairs for funding and Chris Walker for assistance in preparation of AM inoculum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Gosling.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gosling, P., Jones, J. & Bending, G.D. Evidence for functional redundancy in arbuscular mycorrhizal fungi and implications for agroecosystem management. Mycorrhiza 26, 77–83 (2016). https://doi.org/10.1007/s00572-015-0651-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-015-0651-6

Keywords

Navigation