The importance of arbuscular mycorrhiza for Cyclamen purpurascens subsp. immaculatum endemic in Slovakia

Abstract

At present, there is no relevant information on arbuscular mycorrhiza and the effect of the symbiosis on the growth of wild populations of cyclamens. To fill this gap, two populations of Cyclamen purpurascens subsp. immaculatum, endemic in Nízke Tatry (NT) mountains and Veľká Fatra (VF) mountains, Slovakia, were studied in situ as well as in a greenhouse pot experiment. For both populations, mycorrhizal root colonization of native plants was assessed, and mycorrhizal inoculation potential (MIP) of the soils at the two sites was determined in 3 consecutive years. In the greenhouse experiment, the growth response of cyclamens to cross-inoculation with arbuscular mycorrhizal fungi (AMF) was tested: plants from both sites were grown in their native soils and inoculated with a Septoglomus constrictum isolate originating either from the same or from the other plant locality. Although the MIP of soil at the NT site was significantly higher than at the VF site, the level of AMF root colonization of C. purpurascens subsp. immaculatum plants in the field did not significantly differ between the two localities. In the greenhouse experiment, inoculation with AMF generally accelerated cyclamen growth and significantly increased all growth parameters (shoot dry weight, leaf number and area, number of flowers, tuber, and root dry weight) and P uptake. The two populations of C. purpurascens subsp. immaculatum grown in their native soils, however, differed in their response to inoculation. The mycorrhizal growth response of NT plants was one-order higher compared to VF plants, and all their measured growth parameters were stimulated regardless of the fungal isolates’ origin. In the VF plants, only the non-native (NT originating) isolate showed a significant positive effect on several growth traits. It can be concluded that mycorrhiza significantly increased fitness of C. purpurascens subsp. immaculatum, despite the differences between plant populations, implying that AMF symbionts should be taken into account in conservation programs of this endemic plant.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Affre L, Thompson JD, Debussche M (1995) The reproductive biology of the Mediterranean endemic Cyclamen balearicum Willk (Primulaceae). Bot J Linn Soc 118:309–330

    Google Scholar 

  2. Allen MF, Moore TS, Christensen M (1982) Phytohormone changes in Bouteloua gracilis infected by vesicular arbuscular mycorrhizae. 2. Altered levels of gibberellin-like substances and abscisic acid in the host plant and abscisic-acid in the host plant. Can J Bot 60:468–471

    CAS  Article  Google Scholar 

  3. Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  4. Avio L, Pellegrino E, Bonari E, Giovannetti M (2006) Functional diversity of arbuscular mycorrhizal fungal isolates in relation to extraradical mycelial networks. New Phytol 172:347–357

    Article  PubMed  Google Scholar 

  5. Bennett AE, Daniell TJ, Opik M, Davison J, Moora M, Zobel M, Selosse MA, Evans D (2013) Arbuscular mycorrhizal fungal networks vary throughout the growing season and between successional stages. PLoS ONE 8(12):e83241

    PubMed Central  Article  PubMed  Google Scholar 

  6. Bürün B, Sahin O (2009) In vitro and in vivo germination of Cyclamen alpinum seeds. Turk J Bot 33:277–283

    Google Scholar 

  7. Compton JA, Clennett JCB, Culham A (2004) Nomenclature in the dock. Overclassification leads to instability: a case study in the horticulturally important genus Cyclamen (Myrsinaceae). Bot J Linn Soc 146:339–349

    Article  Google Scholar 

  8. Corbineau F, Neveur N, Come D (1989) Seed germination and seedling development in Cyclamen persicum. Ann Bot-London 63:87–96

    Google Scholar 

  9. Davison J, Öpik M, Zobel M, Vasar M, Metsis M, Moora M (2012) Communities of arbuscular mycorrhizal fungi detected in forest soil are spatially heterogeneous but do not vary throughout the growing season. PLoS ONE 7(8):e41938

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  10. de Novais CB, Borges WL, Jesus ED, Saggin OJ, Siqueira JO (2014) Inter- and intraspecific functional variability of tropical arbuscular mycorrhizal fungi isolates colonizing corn plants. Appl Soil Ecol 76:78–86

    Article  Google Scholar 

  11. Debussche M, Grandjanny M, Debussche G, Affre L (1996) The ecology of an endemic and rare species with a fragmented distribution: Cyclamen balearicum Willk in France. Acta Bot Gallica 143:65–84

    Article  Google Scholar 

  12. Debussche M, Debussche G, Grandjanny M (2000) Distribution of Cyclamen repandum Sibth. & Sm. subsp. repandum and ecology in Corsica and continental France. Acta Bot Gallica 147:123–142

    Article  Google Scholar 

  13. Demars BG, Boerner REJ (1995) Mycorrhizal dynamics of 3 woodland herbs of contrasting phenology along topographic gradients. Am J Bot 82:1426–1431

    Article  Google Scholar 

  14. Dickson S (2004) The Arum-Paris continuum of mycorrhizal symbioses. New Phytol 163 (1):187–200

  15. Dubský M, Šrámek F, Vosátka M (2002) Inoculation of cyclamen (Cyclamen persicum) and poinsettia (Euphorbia pulcherrima) with arbuscular mycorrhizal fungi and Trichoderma harzianum. Rost Vyroba 48:63–68

    Google Scholar 

  16. Dugassa GD, vonAlten H, Schonbeck F (1996) Effects of arbuscular mycorrhiza (AM) on health of Linum usitatissimum L. infected by fungal pathogens. Plant Soil 185:173–182

    CAS  Article  Google Scholar 

  17. Enkhtuya B, Rydlová J, Vosátka M (2000) Effectiveness of indigenous and non-indigenous isolates of arbuscular mycorrhizal fungi in soils from degraded ecosystems and man-made habitats. Appl Soil Ecol 14:201–211

    Article  Google Scholar 

  18. Erdelská O, Turis P (1995) Biology of Daphne arbuscula Celak (Thymelaeaceae). Biologia 50:333–346

    Google Scholar 

  19. Gange AC, Ayres RL (1999) On the relation between arbuscular mycorrhizal colonization and plant ‘benefit’. Oikos 87:615–621

    Article  Google Scholar 

  20. Garmendia I, Mangas VJ (2012) Application of arbuscular mycorrhizal fungi on the production of cut flower roses under commercial-like conditions. Span J Agric Res 10:166–174

    Article  Google Scholar 

  21. Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Article  Google Scholar 

  22. Giovannetti M, Mosse B (1980) Evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  23. Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    CAS  Article  PubMed  Google Scholar 

  24. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    CAS  Article  PubMed  Google Scholar 

  25. Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young JPW, Read DJ (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515

    Article  Google Scholar 

  26. Kanka R, Turis P, Chilová V (2008) Phytosociological characteristic of the plant communities with the occurrence of endemic species Cyclamen fatrense. Hacquetia 7:21–31

    Article  Google Scholar 

  27. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  28. Klironomos JN (2003) Variation in plant response to native and exotic arbuscular mycorrhizal fungi. Ecology 84:2292–2301

    Article  Google Scholar 

  29. Kohout P, Sudová R, Janoušková M, Čtvrtlíková M, Hejda M, Pánková H, Slavíková R, Štajerová K, Vosátka M, Sýkorová Z (2014) Comparison of commonly used primer sets for evaluating arbuscular mycorrhizal fungal communities: is there a universal solution? Soil Biol Biochem 68:482–493

    CAS  Article  Google Scholar 

  30. Koide RT (2010) Mycorrhizal symbiosis and plant reproduction. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer Science + Business Media B.V, Dordrecht, pp 297–320

    Chapter  Google Scholar 

  31. Kopáček J, Hejzlar J (1995) Semi-micro determination of total phosphorus in soils, sediments, and organic materials—a simplified perchloric-acid digestion procedure. Commun Soil Sci Plant 26:1935–1946

    Article  Google Scholar 

  32. Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–505

    Article  Google Scholar 

  33. Krüger M, Stockinger H, Krüger C, Schüssler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223

    Article  PubMed  Google Scholar 

  34. Kučera J, Turis P, Zozomová-Lihová J, Slovák M (2013) Cyclamen fatrense, myth or true Western Carpathian endemic? Genetic and morphological evidence. Preslia 85:133–158

    Google Scholar 

  35. Liu Y, He L, An LZ, Helgason T, Feng HY (2009) Arbuscular mycorrhizal dynamics in a chronosequence of Caragana korshinskii plantations. FEMS Microbiol Ecol 67:81–92

    CAS  Article  PubMed  Google Scholar 

  36. Maya MA, Matsubara Y (2013a) Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress. Mycorrhiza 23:381–390

    CAS  Article  PubMed  Google Scholar 

  37. Maya MA, Matsubara Y (2013b) Tolerance to Fusarium wilt and anthracnose diseases and changes of antioxidative activity in mycorrhizal cyclamen. Crop Prot 47:41–48

    CAS  Article  Google Scholar 

  38. Meadow JF, Zabinski CA (2012) Linking symbiont community structures in a model arbuscular mycorrhizal system. New Phytol 194:800–809

    Article  PubMed  Google Scholar 

  39. Munkvold L, Kjoller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364

    Article  Google Scholar 

  40. Nowak J (2004) Effects of arbuscular mycorrhizal fungi and organic fertilization on growth, flowering, nutrient uptake, photosynthesis and transpiration of geranium (Pelargonium hortorum L.H. Bailey ‘Tango Orange’). Symbiosis 37:259–266

    Google Scholar 

  41. Pánková H, Münzbergová Z, Rydlová J, Vosátka M (2008) Differences in AM fungal root colonization between populations of perennial Aster species have genetic reasons. Oecologia 157:211–220

    Article  PubMed  Google Scholar 

  42. Pánková H, Münzbergová Z, Rydlová J, Vosátka M (2011) The response of Aster amellus (Asteraceae) to mycorrhiza depends on the origins of both the soil and the fungi. Am J Bot 98:850–858

    Article  PubMed  Google Scholar 

  43. Pánková H, Münzbergová Z, Rydlová J, Vosátka M (2014) Co-adaptation of plants and communities of arbuscular mycorrhizal fungi to their soil conditions. Folia Geobot 49:521–540

    Article  Google Scholar 

  44. Perner H, Schwarz D, Bruns C, Mader P, George E (2007) Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza 17:469–474

    Article  PubMed  Google Scholar 

  45. Rambaut A, Suchard MA, Xie D, Drummond AJ (2013) Tracer v1.5, Available from http://beast.bio.ed.ac.uk/Tracer

  46. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    CAS  Article  PubMed  Google Scholar 

  47. Schultz PA, Miller RM, Jastrow JD, Rivetta CV, Bever JD (2001) Evidence of a mycorrhizal mechanism for the adaptation of Andropogon gerardii (Poaceae) to high- and low-nutrient prairies. Am J Bot 88:1650–1656

    CAS  Article  PubMed  Google Scholar 

  48. Schwartz-Tzachor R, Dafni A, Potts SG, Elsikowitch D (2006) An ancient pollinator of a contemporary plant (Cyclamen persicum): when pollination syndromes break down. Flora 201:370–373

    Article  Google Scholar 

  49. Senés-Guerrero C, Torres-Cortés G, Pfeiffer S, Rojas M, Schüssler A (2014) Potato-associated arbuscular mycorrhizal fungal communities in the Peruvian Andes. Mycorrhiza 24(6):405–417

  50. Sensoy S, Demir S, Turkmen O, Erdinc C, Savur OB (2007) Responses of some different pepper (Capsicum annuum L.) genotypes to inoculation with two different arbuscular mycorrhizal fungi. Sci Hortic 113:92–95

    Article  Google Scholar 

  51. Slovák M, Kučera J, Turis P, Zozomová-Lihová J (2013) Phylogeography of the alpine violet (Cyclamen purpurascens Mill.) northernmost glacial refugia and an endemic subspecies in the Western Carpathians? Acta Biol Cracov Bot 55:33

    Google Scholar 

  52. Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  53. Sohn BK, Kim KY, Chung SJ, Kim WS, Park SM, Kang JG, Rim YS, Cho JS, Kim TH, Lee JH (2003) Effect of the different timing of AMF inoculation on plant growth and flower quality of chrysanthemum. Sci Hortic 98:173–183

    Article  Google Scholar 

  54. Streitwolf-Engel R, van der Heijden MGA, Wiemken A, Sanders IR (2001) The ecological significance of arbuscular mycorrhizal fungal effects on clonal reproduction in plants. Ecology 82:2846–2859

    Article  Google Scholar 

  55. Sudová R, Doubková P, Vosátka M (2008) Mycorrhizal association of Agrostis capillaris and Glomus intraradices under heavy metal stress: combination of plant clones and fungal isolates from contaminated and uncontaminated substrates. Appl Soil Ecol 40:19–29

    Article  Google Scholar 

  56. Sýkorová Z, Ineichen K, Wiemken A, Redecker D (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18:1–14

    Article  PubMed  Google Scholar 

  57. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  58. Trent JD, Svejcar TJ, Blank RR (1994) Mycorrhizal colonization, hyphal lengths, and soil-moisture associated with 2 Artemisia tridentata subspecies. Great Basin Nat 54:291–300

    Google Scholar 

  59. Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un systeme radiculaire. Recherche de methodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 217–221

    Google Scholar 

  60. Turis P (2009) Ecobiology, selected population characteristics, distribution and protection of Cyclamen fatrense in the eastern part of its distribution area. PhD thesis, Bratislava

  61. Turis P, Vidlička L (2013) Relationship of animals to the cyclamen Cyclamen fatrense Halda et Sojak: pollinators, consumers and occasional visitors. Biologia 68:517–524

    Article  Google Scholar 

  62. Turis P, Kliment J, Feráková V, Dítě D, Eliáš P, Hrivnák R, Košťál J, Šuvada R, Mráz P, Bernátová D (2014) Red list of vascular plants of the Carpathian part of Slovakia. Thaiszia - J Bot 24:35–87

    Google Scholar 

  63. Udaiyan K, Karthikeyan A, Muthukumar T (1996) Influence of edaphic and climatic factors on dynamics of root colonization and spore density of vesicular-arbuscular mycorrhizal fungi in Acacia farnesiana Willd, and A. planifrons W et A. Trees-Struct Funct 11:65–71

    Google Scholar 

  64. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  65. van der Heijden MGA, Wiemken A, Sanders IR (2003) Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytol 157:569–578

    Article  Google Scholar 

  66. Vosátka M, Jansa J, Regvar M, Šrámek F, Malcová R (1999) Inoculation with mycorrhizal fungi—a feasible biotechnology for horticulture. Phyton-Ann Rei Bot A 39:219–224

    Google Scholar 

  67. Yang W, Zheng Y, Gao C, He XH, Ding Q, Kim Y, Rui YC, Wang SP, Guo LD (2013) The arbuscular mycorrhizal fungal community response to warming and grazing differs between soil and roots on the Qinghai-Tibetan Plateau. PLoS ONE 8(9):e76447

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  68. Yesson C, Toomey NH, Culham A (2009) Cyclamen: time, sea and speciation biogeography using a temporally calibrated phylogeny. J Biogeogr 36:1234–1252

    Article  Google Scholar 

  69. Zubek S, Turnau K, Blaszkowski J (2005) Arbuscular mycorrhiza of plants from the Mountain Boptanical Garden in Zakopane. Acta Mycol 40:25–41

    Article  Google Scholar 

  70. Zubek S, Turnau K, Blaszkowski J (2008) Arbuscular mycorrhiza of endemic and endangered plants from the Tatra Mts. Acta Soc Bot Pol 77:149–156

    Article  Google Scholar 

  71. Zubek S, Turnau K, Tsimilli-Michael M, Strasser RJ (2009a) Response of endangered plant species to inoculation with arbuscular mycorrhizal fungi and soil bacteria. Mycorrhiza 19:113–123

    Article  PubMed  Google Scholar 

  72. Zubek S, Blaszkowski J, Delimat A, Turnau K (2009b) Arbuscular mycorrhizal and dark septate endophyte colonization along altitudinal gradients in the Tatra Mountains. Arct Antarct Alp Res 41:272–279

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Pavla Doubková for the valuable comments on the text of the manuscript and to Marie Albrechtová and Hana Strusková from the Analytical Laboratories of the Institute of Botany AS CR, who performed soil chemical analyses and determined the content of phosphorus in plant biomass. Financial support for this study was provided by the long-term research development project RVO 67985939.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jana Rydlová.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rydlová, J., Sýkorová, Z., Slavíková, R. et al. The importance of arbuscular mycorrhiza for Cyclamen purpurascens subsp. immaculatum endemic in Slovakia. Mycorrhiza 25, 599–609 (2015). https://doi.org/10.1007/s00572-015-0634-7

Download citation

Keywords

  • Wild cyclamens
  • Root colonization
  • Inoculation
  • Septoglomus constrictum
  • Growth response