Skip to main content
Log in

Up-regulation of genes involved in N-acetylglucosamine uptake and metabolism suggests a recycling mode of chitin in intraradical mycelium of arbuscular mycorrhizal fungi

  • Short Note
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal (AM) fungi colonize roots and form two kinds of mycelium, intraradical mycelium (IRM) and extraradical mycelium (ERM). Arbuscules are characteristic IRM structures that highly branch within host cells in order to mediate resource exchange between the symbionts. They are ephemeral structures and at the end of their life span, arbuscular branches collapse from the tip, fungal cytoplasm withdraws, and the whole arbuscule shrinks into fungal clumps. The exoskeleton of an arbuscule contains structured chitin, which is a polymer of N-acetylglucosamine (GlcNAc), whereas a collapsed arbuscule does not. The molecular mechanisms underlying the turnover of chitin in AM fungi remain unknown. Here, a GlcNAc transporter, RiNGT, was identified from the AM fungus Rhizophagus irregularis. Yeast mutants defective in endogenous GlcNAc uptake and expressing RiNGT took up 14C-GlcNAc, and the optimum uptake was at acidic pH values (pH 4.0–4.5). The transcript levels of RiNGT in IRM in mycorrhizal Lotus japonicus roots were over 1000 times higher than those in ERM. GlcNAc-6-phosphate deacetylase (DAC1) and glucosamine-6-phosphate isomerase (NAG1) genes, which are related to the GlcNAc catabolism pathway, were also induced in IRM. Altogether, data suggest the existence of an enhanced recycling mode of GlcNAc in IRM of AM fungi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Adams DJ (2004) Fungal cell wall chitinases and glucanases. Microbiology 150:2029–2035

    Article  CAS  PubMed  Google Scholar 

  • Alexander T, Toth R, Meier R, Weber HC (1989) Dynamics of arbuscule development and degeneration in onion, bean, and tomato with reference to vesicular-arbuscular mycorrhizae in grasses. Can J Bot 67:2505–2513

    Article  Google Scholar 

  • Alvarez FJ, Konopka JB (2007) Identification of an N-acetylglucosamine transporter that mediates hyphal induction in Candida albicans. Mol Biol Cell 18:965–975

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bago B, Cano C (2005) Breaking myths on arbuscular mycorrhizas in in vitro biology. In: Declerck S, Strullu DG, Fortin JA (eds) In vitro culture of mycorrhizas. Springer, Heidelberg, pp 111–138

    Chapter  Google Scholar 

  • Bonanomi A, Wiemken A, Boller T, Salzer P (2001) Local induction of a mycorrhiza-specific class III chitinase gene in cortical root cells of Medicago truncatula containing developing or mature arbuscules. Plant Biol 3:194–199

    Article  CAS  Google Scholar 

  • Bonfante-Fasolo P (1984) Anatomy and morphology of VA mycorrhizae. In: Powell CL, Bagyaraj DJ (eds) VA mycorrhizas. CRC Press, Boca Raton, pp 5–33

    Google Scholar 

  • Bonfante-Fasolo P, Faccio A, Perotto S, Schubert A (1990) Correlation between chitin distribution and cell wall morphology in the mycorrhizal fungus Glomus versiforme. Mycol Res 94:157–165

    Article  CAS  Google Scholar 

  • Duo-Chuan L (2006) Review of fungal chitinases. Mycopathologia 161:345–360

    Article  PubMed  Google Scholar 

  • Elfstrand M, Feddermann N, Ineichen K, Nagaraj VJ, Wiemken A, Boller T, Salzer P (2005) Ectopic expression of the mycorrhiza specific chitinase gene Mtchit33 in Medicago truncatula root-organ cultures stimulates spore germination of glomalean fungi. New Phytol 167:557–570

    Article  CAS  PubMed  Google Scholar 

  • Genre A, Chabaud M, Balzergue C, Puech-Pagès V, Novero M, Rey T, Fournier J, Rochange S, Bécard G, Bonfante P, Barker DG (2013) Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol 198:190–202

    Article  PubMed  Google Scholar 

  • Gietz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350:87–96

    CAS  PubMed  Google Scholar 

  • Gilmore SA, Naseem S, Konopka JB, Sil A (2013) N-acetylglucosamine (GlcNAc) triggers a rapid, temperature-responsive morphogenetic program in thermally dimorphic fungi. PLoS Genet 9:e1003799. doi:10.1371/journal.pgen.1003799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617

    Article  CAS  PubMed  Google Scholar 

  • Guttenberger M (2000) Arbuscules of vesicular-arbuscular mycorrhizal fungi inhabit an acidic compartment within plant roots. Planta 211:299–304

    Article  CAS  PubMed  Google Scholar 

  • Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp. is crucial for the symbiotic relationship with plants. Plant Cell 23:3812–3823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hogekamp C, Arndt D, Pereira P, Becker JD, Hohnjec N, Küster H (2011) Laser-microdissection unravels cell-type specific transcription in arbuscular mycorrhizal roots, including CAAT-box TF gene expression correlating with fungal contact and spread. Plant Physiol 157:2023–2043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kikuchi Y, Hijikata N, Yokoyama K, Ohtomo R, Handa Y, Kawaguchi M, Saito K, Ezawa T (2014) Polyphosphate accumulation is driven by transcriptome alterations that lead to near-synchronous and near-equivalent uptake of inorganic cations in an arbuscular mycorrhizal fungus. New Phytol 204:638–649

    Article  CAS  PubMed  Google Scholar 

  • Kobae Y, Fujiwara T (2014) Earliest colonization events of Rhizophagus irregularis in rice roots occur preferentially in previously uncolonized cells. Plant Cell Physiol 55:1497–1510

    Article  PubMed  Google Scholar 

  • Kobae Y, Hata S (2010) Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. Plant Cell Physiol 51:341–353

    Article  CAS  PubMed  Google Scholar 

  • Kobae Y, Gutjahr C, Paszkowski U, Kojima T, Fujiwara T, Hata S (2014a) Lipid droplets of arbuscular mycorrhizal fungi emerge in concert with arbuscule collapse. Plant Cell Physiol 55:1945–1953

    Article  PubMed  Google Scholar 

  • Kobae Y, Tomioka R, Tanoi K, Kobayashi NI, Ohmori Y, Nishida S, Fujiwara T (2014b) Selective induction of putative iron transporters, OPT8a and OPT8b, in maize by mycorrhizal colonization. Soil Sci Plant Nutr. doi:10.1080/00380768.2014.949854

    Google Scholar 

  • Konopka JB (2012) N-acetylglucosamine (GlcNAc) functions in cell signaling. Scientifica (Cairo). doi:10.6064/2012/489208

    Google Scholar 

  • Krajinski F, Courty PE, Sieh D, Franken P, Zhang H, Bucher M, Gerlach N, Kryvoruchko I, Zoeller D, Udvardi M, Hause B (2014) The H+-ATPase HA1 of Medicago truncatula is essential for phosphate transport and plant growth during arbuscular mycorrhizal symbiosis. Plant Cell 26:1808–1817

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lenardon MD, Whitton RK, Munro CA, Marshall D, Gow NAR (2007) Individual chitin synthase enzymes synthesize microfibrils of differing structure at specific locations in Candida albicans. Mol Microbiol 66:1164–1173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ma H, Kunes S, Schatz PJ, Botstein D (1987) Plasmid construction by homologous recombination in yeast. Gene 58:201–216

    Article  CAS  PubMed  Google Scholar 

  • Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA, Driguez H, Bécard G, Dénarié J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63

    Article  CAS  PubMed  Google Scholar 

  • Mio T, Yabe T, Arisawa M, Yamada-Okabe H (1998) The eukaryotic UDP-N-acetylglucosamine pyrophosphorylases. Gene cloning, protein expression, and catalytic mechanism. J Biol Chem 273:14392–14397

    Article  CAS  PubMed  Google Scholar 

  • Mio T, Yamada-Okabe T, Arisawa M, Yamada-Okabe H (2000) Functional cloning and mutational analysis of the human cDNA for phosphoacetylglucosamine mutase: identification of the amino acid residues essential for the catalysis. Biochim Biophys Acta 1492:369–376

    Article  CAS  PubMed  Google Scholar 

  • Mosse B, Hepper C (1975) Vesicular arbuscular mycorrhizal infections in root organ cultures. Physiol Plant Pathol 5:215–223

    Article  Google Scholar 

  • Munro CA, Whitton RK, Hughes HB, Rella M, Selvaggini S, Gow NAR (2003) CHS8—a fourth chitin synthase gene of Candida albicans contributes to in vitro chitin synthase activity, but is dispensable for growth. Fungal Genet Biol 40:146–158

    Article  CAS  PubMed  Google Scholar 

  • Olsson PA, Tingstrup I, Jakobsen I, Bååth E (1999) Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol Biochem 31:1879–1887

    Article  CAS  Google Scholar 

  • Rasmussen S, Liu Q, Parsons AJ, Xue H, Sinclair B, Newman JA (2012) Grass-endophyte interactions: a note on the role of monosaccharide transport in the Neotyphodium lolii-Lolium perenne symbiosis. New Phytol 196:7–12

    Article  CAS  PubMed  Google Scholar 

  • Rich MK, Schorderet M, Reinhardt D (2014) The role of the cell wall compartment in mutualistic symbioses of plants. Front Plant Sci 5:238. doi:10.3389/fpls.2014.00238

    Article  PubMed Central  PubMed  Google Scholar 

  • Saito M (1995) Enzyme activities of the internal hyphae and germinated spores of an arbuscular mycorrhizal fungus, Gigaspora margarita Becker and Hall. New Phytol 129:425–431

    Article  CAS  Google Scholar 

  • Salzer P, Bonanomi A, Beyer K, Vögeli-Lange R, Aeschbacher RA, Lange J, Wiemken A, Kim D, Cook DR, Boller T (2000) Differential expression of eight chitinase genes in Medicago truncatula roots during mycorrhiza formation, nodulation, and pathogen infection. Mol Plant Microbe Interact 13:763–777

    Article  CAS  PubMed  Google Scholar 

  • Scarcelli JJ, Colussi PA, Fabre AL, Boles E, Orlean P, Taron CH (2012) Uptake of radiolabeled GlcNAc into Saccharomyces cerevisiae via native hexose transporters and its in vivo incorporation into GPI precursors in cells expressing heterologous GlcNAc kinase. FEMS Yeast Res 12:305–316

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schüβler A, Martin H, Cohen D, Fitz M, Wipf D (2006) Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–936

    Article  Google Scholar 

  • Shibuya N, Minami E (2001) Oligosaccharide signalling for defence responses in plant. Physiol Mol Plant Pathol 59:223–233

    Article  CAS  Google Scholar 

  • Smith SE, Dickson S, Smith FA (2001) Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? Aust J Plant Physiol 28:683–694

    CAS  Google Scholar 

  • Solaiman MZ, Senoo K, Kawaguchi M, Imaizumi-Anraku H, Akao S, Tanaka A, Obata H (2000) Characterization of mycorrhizas formed by Glomus sp. on roots of hypernodulating mutants of Lotus japonicus. J Plant Res 113:443–448

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka K, Nakafuku M, Tamanoi F, Kaziro Y, Matsumoto K, Toh-e A (1990) IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian ras GTPase-activating protein. Mol Cell Biol 10:4303–4313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tisdall JM, Oades JM (1980) The effect of crop rotation on aggregation in a red-brown earth. Aust J Soil Res 18:423–433

    Article  CAS  Google Scholar 

  • Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, Croll D, da Silva C, Gomez SK, Koul R, Ferrol N, Fiorilli V, Formey D, Franken P, Helber N, Hijri M, Lanfranco L, Lindquist E, Liu Y, Malbreil M, Morin E, Poulain J, Shapiro H, van Tuinen D, Waschke A, Azcón-Aguilar C, Bécard G, Bonfante P, Harrison MJ, Küster H, Lammers P, Paszkowski U, Requena N, Rensing SA, Roux C, Sanders IR, Shachar-Hill Y, Tuskan G, Young JP, Gianinazzi-Pearson V, Martin F (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193:755–769

    Article  CAS  PubMed  Google Scholar 

  • Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, Charron P, Duensing N, Frei dit Frey N, Gianinazzi-Pearson V, Gilbert B, Handa Y, Herr J, Hijri M, Koul M, Kawaguchi M, Krajinski F, Lammers P, Masclaux FG, Murat C, Morin E, Ndikumana S, Pagni M, Petitpierre D, Requena N, Rosikiewicz P, Riley R, Saito K, San Clemente H, Shapiro H, van Tuinen D, Bécard G, Bonfante P, Paszkowski U, Shachar-Hill Y, Tuskan GA, Young JPW, Sanders IR, Henrissat B, Rensing SA, Grigoriev IV, Corradi N, Roux C, Martin F (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci U S A 110:20117–20122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Toth R, Miller M (1984) Dynamics of arbuscule development and degeneration in a Zea mays mycorrhiza. Am J Bot 71:449–460

    Article  Google Scholar 

  • Treseder KK, Schimel JP, Garcia MO, Whiteside MD (2010) Slow turnover and production of fungal hyphae during a Californian dry season. Soil Biol Biochem 42:1657–1660

    Article  CAS  Google Scholar 

  • Vierheilig H, Schweigerb P, Brundrett M (2005) An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol Plant 125:393–404

    CAS  Google Scholar 

  • Wahl R, Wippel K, Goos S, Kämper J, Sauer N (2010) A novel high-affinity sucrose transporter is required for virulence of the plant pathogen Ustilago maydis. PLoS Biol 8:e1000303. doi:10.1371/journal.pbio.1000303

    Article  PubMed Central  PubMed  Google Scholar 

  • Wells LK, Vosseller K, Hart GW (2001) Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291:2376–2378

    Article  CAS  PubMed  Google Scholar 

  • Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the project Network of Center of Carbon Dioxide Resource Studies in Plants (NC-CARP) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. This work was also supported by the Ministry of Agriculture, Forestry and Fisheries of Japan (Genomics for Agricultural Innovation, PMI-0003); the Ministry of Education, Culture, Sports, Science and Technology of Japan (Grant in Aid for Scientific Research on Innovative Areas ‘Genome Science and Genetic Bases for the Evolution of Complex Adaptive Traits’, No. 22128006); and the Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry to K.S. We thank E. Boles (University of Frankfurt) for providing EBY.VW4000. We appreciated the much help by the research assistant Ms. Reika Oguchi (Shinshu University). The authors thank Stefan Reuscher (Nagoya University) for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Kobae.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1203 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobae, Y., Kawachi, M., Saito, K. et al. Up-regulation of genes involved in N-acetylglucosamine uptake and metabolism suggests a recycling mode of chitin in intraradical mycelium of arbuscular mycorrhizal fungi. Mycorrhiza 25, 411–417 (2015). https://doi.org/10.1007/s00572-014-0623-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-014-0623-2

Keywords

Navigation