Skip to main content

Elevated CO2 and O3 effects on ectomycorrhizal fungal root tip communities in consideration of a post-agricultural soil nutrient gradient legacy

Abstract

Despite the critical role of EMF in nutrient and carbon (C) dynamics, combined effects of global atmospheric pollutants on ectomycorrhizal fungi (EMF) are unclear. Here, we present research on EMF root-level community responses to elevated CO2 and O3. We discovered that belowground EMF community richness and similarity were both negatively affected by CO2 and O3, but the effects of CO2 and O3 on EMF communities were contingent on a site soil pH and cation availability gradient. These results contrast with our previous work showing a strong direct effect of CO2 and O3 on sporocarp community dynamics and production. We discuss the possible role of carbon demand and allocation by EMF taxa in the discrepancy of these results. EMF communities were structured by a legacy of spatially defined soil properties, changing atmospheric chemistry and temporal dynamics. It is therefore necessary to understand global change impacts across multiple environmental gradients and spatiotemporal scales.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Agerer R (2001) Exploration types of ectomycorrhizae: a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Agerer R (2002) Colour atlas of ectomycorrhizae. Einhorn, Schwäbisch Gmünd

    Google Scholar 

  • Agerer R (2006) Fungal relationships and structural identity of their ectomycorrhizae. Mycol Prog 5:67–107

    Article  Google Scholar 

  • Alberton O, Kuyper TW (2009) Ectomycorrhizal fungi associated with Pinus sylvestris seedlings respond differently to increased carbon and nitrogen availability: implications for ecosystem responses to global change. Glob Chang Biol 15:166–175

    Article  Google Scholar 

  • Andersen CP (2003) Source-sink balance and carbon allocation below ground in plants exposed to ozone. New Phytol 157:213–228

    Article  CAS  Google Scholar 

  • Andrew C, Lilleskov EA (2009) Productivity and community structure of ectomycorrhizal fungal sporocarps under increased atmospheric CO2 and O3. Ecol Lett 12:813–822

    Article  PubMed  Google Scholar 

  • Andrew CJ, Van Diepen LTA, Miller RM, Lilleskov EA (2014) Aspen-associated mycorrhizal fungal production and respiration as a function of changing CO2, O3, and climatic variables. Fun Eco

  • Avis PG, Mueller GM, Lussenhop J (2008) Ectomycorrhizal fungal communities in two North American oak forests respond to nitrogen addition. New Phytol 179:472–483

    Article  PubMed  CAS  Google Scholar 

  • Boddy L, Büntgen U, Egli S, Gange AC, Heegaard E, Kirk PM, Mohammad A, Kauserud H (2014) Climate variation effects on fungal fruiting. Fun Eco

  • Borcard D, Gillet F, Legendre P (2011) Numerical Ecology with R. Springer, New York

    Book  Google Scholar 

  • Büntgen U, Kauserud H, Egli S (2011) Linking climate variability to mushroom productivity and phenology. Front Ecol Environ 10:14–19

    Article  Google Scholar 

  • Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159

    Article  Google Scholar 

  • Chung H, Zak DR, Lilleskov EA (2006) Fungal community composition and metabolism under elevated CO2 and O3. Oecologia 147:143–154

    Article  PubMed  Google Scholar 

  • Colwell RK (2006) EstimateS: statistical estimation of species richness and shared species from samples. Version 8.0. User’s Guide and application. http://purl.oclc.org/estimates. Accessed 1 July 2009

  • Dickson RE, Lewin KF, Isebrands JG, Coleman MD, Heilman WE, Riemenschneider DE, et al (2000) Forest Atmosphere Carbon Transfer and Storage (FACTS-II) the Aspen Free-air CO2 and O3 Enrichment (FACE) Project: an Overview. Gen. Tech. Rep. NC-214. St. Paul, MN: USDA-FS, NCRS

  • Dosskey MG, Linderman RG, Boersma L (1990) Carbon–sink stimulation of photosynthesis in Douglas fir seedlings by some ectomycorrhizas. New Phytol 115:269–274

    Article  CAS  Google Scholar 

  • Edwards IP, Zak DR (2011) Fungal community composition and function after long-term exposure of northern forests to elevated atmospheric CO2 and tropospheric O3. Glob Chang Biol 17:2184–2195

    Article  Google Scholar 

  • Finzi AC, Norby RJ, Calfapietra C, Gallet-Budynek A, Gielen B, Holmes WE, Hoosbeek MR, Iversen CM, Jackson RB, Kubiske ME et al (2007) Increases in nitrogen uptake rather than nitrogen-use-efficiency support higher rates of temperate forest productivity under elevated CO2. PNAS 104:14014–14019

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fransson P (2012) Elevated CO2 impacts ectomycorrhiza-mediated forest soil carbon flow: fungal biomass production, respiration and exudation. Fungal Ecol 5:85–98

    Article  Google Scholar 

  • Fransson PMA, Taylor AFS, Finlay RD (2005) Mycelial production, spread and root colonization by the ectomycorrhizal fungi Hebeloma crustuliniforme and Paxillus involutus under elevated atmospheric CO2. Mycorrhiza 15:25–31

    Article  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  • Gardes M, Bruns TD (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below-ground views. Can J Bot 74:1572–1583

    Article  Google Scholar 

  • Giovannetti G, Roth-Bejerano N, Zanini E, Kagan-Zur V (1994) Truffles and their cultivation. Hortic Rev 16:71–108

    Google Scholar 

  • Gorissen A, Kuyper TW (2000) Fungal species-specific responses of ectomycorrhizal Scots pine (Pinus sylvestris) to elevated [CO2]. New Phytol 146:163–168

    Article  CAS  Google Scholar 

  • Hobbie EA, Agerer R (2010) Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant Soil 327:71–83

    Article  CAS  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  PubMed  Google Scholar 

  • Johansson EM, Fransson PMA, Finlay RD, van Hees PAW (2009) Quantitative analysis of soluble exudates produced by ectomycorrhizal roots as a response to ambient and elevated CO2. Soil Biol Biochem 41:1111–1116

    Article  CAS  Google Scholar 

  • Kauserud H, Heegaard E, Büntgen U, Halvorsen R, Egli S, Senn-Irlet B, Krisai-Greilhuber I, Dämon W, Sparks T, Nordén J, Høiland K, Kirk P, Semenov M, Boddy L, Stenseth NC (2012) Warming-induced shift in European mushroom fruiting phenology. PNAS 109:14488–14493

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kjøller R, Clemmensen KE (2009) Belowground ectomycorrhizal fungal communities respond to liming in three southern Swedish coniferous forest stands. For Ecol Manag 257:2217–2225

    Article  Google Scholar 

  • Kõljalg U, Larsson KH, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E et al (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068

    Article  PubMed  Google Scholar 

  • Kraepelin G, Michaelis H (1997) Effect of liming on the population of macrofungi in a Scots pine plantation of the Grunewald forest of Berlin. Z Mykologie 63:99–126

    Google Scholar 

  • Kubiske ME, Quinn VS, Marquardt PE, Karnosky DF (2007) Effects of elevated atmospheric CO2 and/or O3 on intra- and interspecific competitive ability of aspen. Plant Biol 9:342–355

    Article  PubMed  CAS  Google Scholar 

  • Landeweert R, Leeflang P, Kuyper TW, Hoffland E, Rosling A, Wernars K, Smit E (2003) Molecular identification of ectomycorrhizal mycelium in soil horizons. Appl Environ Microbiol 69:327–333

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical Ecology. Elsevier, Oxford

    Google Scholar 

  • Lilleskov EA (2005) How do composition, structure, and function of mycorrhizal fungal communities respond to nitrogen deposition and ozone exposure? In: Dighton J, Oudemans P, White J (eds) The fungal community: its organization and role in the ecosystem, 3rd edn. Marcel Dekker, New York, pp 769–801

    Chapter  Google Scholar 

  • Lilleskov EA, Parrent JL (2007) Can we develop general predictive models of mycorrhizal fungal community–environment relationships? New Phytol 174:250–256

    Article  PubMed  CAS  Google Scholar 

  • Lilleskov EA, Fahey TJ, Lovett GM (2001) Ectomycorrhizal fungal aboveground community change over an atmospheric nitrogen deposition gradient. Ecol Appl 11:397–410

    Article  Google Scholar 

  • Lilleskov EA, Bruns TD, Horton TR, Taylor D, Grogan P (2004) Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities. FEMS Microbiol Ecol 49:319–332

    Article  PubMed  CAS  Google Scholar 

  • Lilleskov EA, Hobbie EA, Horton TR (2011) Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol 4:174–183

    Article  Google Scholar 

  • Lindahl BD, de Boer W, Finlay RD (2010) Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi. ISME J 4:872–881

    Article  PubMed  Google Scholar 

  • Nara K, Nakaya H, Hogetsu T (2003) Ectomycorrhizal sporocarp succession and production during early primary succession on Mount Fuji. New Phytol 158:193–206

    Article  Google Scholar 

  • Parrent JL, Vilgalys R (2007) Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO2 and nitrogen fertilization. New Phytol 176:164–174

    Article  PubMed  Google Scholar 

  • Parrent JL, Morris WF, Vilgalys R (2006) CO2-enrichment and nutrient availability alter ectomycorrhizal fungal communities. Ecology 87:2278–2287

    Article  PubMed  Google Scholar 

  • Peay KG, Bruns TD, Kennedy PG, Bergemann SE, Garbelotto M (2007) A strong species-area relationship for eukaryotic soil microbes: island size matters for ectomycorrhizal fungi. Ecol Lett 10:470–480

    Article  PubMed  Google Scholar 

  • Pena R, Offermann C, Simon J, Naumann PS, Geβler A, Holst J, Dannenmann M, Mayer H, Kögel-Knabner I, Rennenberg H et al (2010) Girdling affects ectomycorrhizal fungal (EMF) diversity and reveals functional differences in EMF community composition in a beech forest. Appl Environ Microbiol 76:1831–1841

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Phillips RP, Meier IC, Bernhardt ES, Grandy AS, Wickings K, Finzi AD (2012) Roots and fungi accelerate carbon and nitrogen cycling in forests exposed to elevated CO2. Ecol Lett 15:1042–1049

    Article  PubMed  Google Scholar 

  • Poznanovic SK, Lilleskov EA, Webster CR (submitted) Ectomycorrhizal fungal communities of eastern hemlock and yellow birch seedlings co-occurring on coarse woody debris: composition, species sharing, and relation to host and substrate condition. Mycorrhiza

  • Pregitzer KS, Loya W, Kubiske M, Zak D (2006) Soil respiration in northern forests exposed to elevated atmospheric carbon dioxide and ozone. Oecologia 148:503–516

    Article  PubMed  Google Scholar 

  • Rey A, Jarvis PG (1997) Growth response of young birch trees (Betula pendula Roth.) after four and a half years of CO2 exposure. Ann Bot 80:809–816

    Article  Google Scholar 

  • Rineau F, Garbaye J (2009) Effects of liming on ectomycorrhizal community structure in relation to soil horizons and tree hosts. Fungal Ecol 2:103–109

    Article  Google Scholar 

  • Rosling A, Landeweert R, Lindahl BD, Larsson K-H, Kuyper TW, Taylor AFS, Finlay RD (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol 159:775–783

    Article  CAS  Google Scholar 

  • Shaw PJA, Dighton J, Poskitt J, McLeod AR (1992) The effects of sulphur dioxide and ozone on the mycorrhizas of Scots pine and Norway spruce in a field fumigation system. Mycol Res 96:785–791

    Article  CAS  Google Scholar 

  • Staddon PL, Fitter AH (1998) Does elevated atmospheric carbon dioxide affect arbuscular mycorrhizas? Trends Ecol Evol 13:455–457

    Article  PubMed  CAS  Google Scholar 

  • Taylor AFS, Finlay RD (2003) Effects of liming and ash application on below ground ectomycorrhizal community structure in two Norway spruce forests. Water Air Soil Pollut Focus 3:63–76

    Article  CAS  Google Scholar 

  • Tedersoo L, Hansen K, Perry BA, Kjøller R (2006) Molecular and morphological diversity of pezizalean ectomycorrhiza. New Phytol 170:581–596

    Article  PubMed  CAS  Google Scholar 

  • Twieg BD, Durall DM, Simard SW (2007) Ectomycorrhizal fungal succession in mixed temperate forests. New Phytol 176:437–447

    Article  PubMed  Google Scholar 

  • Wallenda T, Kottke I (1998) Nitrogen deposition and ectomycorrhizas. New Phytol 139:169–187

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Chapter  Google Scholar 

  • Yarwood SA, Myrold DD, HÓ§gberg MN (2009) Termination of belowground C allocation by trees alters soil fungal and bacterial communities in a boreal forest. FEMS Microbiol Ecol 70:151–162

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Peter Avis, Rosanne Healy, Leho Tedersoo, and Bryant Scharenbroch for their nomenclatural assistance, advice, and/or suggestions. We appreciated the molecular work aided by Jessica Bibbee and Andy Quinn, as well as field and lab help from Joy Andrew, Robert Andrew, and Lynette Potvin. Funding was provided by the USDA Forest Service, Northern Research Station, two Graduate Research Grants awarded to C. Andrew from the Ecosystem Science Center (Michigan Technological University), and a Michigan Technological University Graduate School Finishing Fellowship Grant. We thank the US Department of Energy and the FACE Steering Committee for implementing and maintaining the Aspen FACE site for the duration of this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrie Andrew.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLS 51 kb)

ESM 2

(XLS 36 kb)

ESM 3

(XLS 36 kb)

ESM 4

(XLS 29 kb)

ESM 5

(XLS 42.5 kb)

ESM 6

(XLS 29 kb)

ESM 7

(XLS 22 kb)

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrew, C., Lilleskov, E.A. Elevated CO2 and O3 effects on ectomycorrhizal fungal root tip communities in consideration of a post-agricultural soil nutrient gradient legacy. Mycorrhiza 24, 581–593 (2014). https://doi.org/10.1007/s00572-014-0577-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-014-0577-4

Keywords

  • CO2
  • Carbon demand
  • Ectomycorrhizal fungi
  • O3
  • Legacies
  • pH
  • Root tips