Skip to main content
Log in

Nickel tolerance of serpentine and non-serpentine Knautia arvensis plants as affected by arbuscular mycorrhizal symbiosis

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Serpentine soils have naturally elevated concentrations of certain heavy metals, including nickel. This study addressed the role of plant origin (serpentine vs. non-serpentine) and symbiosis with arbuscular mycorrhizal fungi (AMF) in plant Ni tolerance. A semi-hydroponic experiment involving three levels of Ni and serpentine and non-serpentine AMF isolates and populations of a model plant species (Knautia arvensis) revealed considerable negative effects of elevated Ni availability on both plant and fungal performance. Plant growth response to Ni was independent of edaphic origin; however, higher Ni tolerance of serpentine plants was indicated by a smaller decline in the concentrations of photosynthetic pigments and restricted root-to-shoot Ni translocation. Serpentine plants also retained relatively more Mg in their roots, resulting in a higher shoot Ca/Mg ratio. AMF inoculation, especially with the non-serpentine isolate, further aggravated Ni toxicity to host plants. Therefore, AMF do not appear to be involved in Ni tolerance of serpentine K. arvensis plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Amir H, Jasper DA, Abbott LK (2008) Tolerance and induction of tolerance to Ni of arbuscular mycorrhizal fungi from New Caledonian ultramafic soils. Mycorrhiza 19:1–6

    Article  CAS  PubMed  Google Scholar 

  • Amir H, Lagrange A, Hassaϊne N, Cavaloc Y (2013) Arbuscular mycorrhizal fungi from New Caledonian ultramafic soils improve tolerance to nickel of endemic plant species. Mycorrhiza. doi:10.1007/s00572-013-0499-6

    Google Scholar 

  • Castelli JP, Casper BB (2003) Intraspecific AM fungal variation contributes to plant–fungal feedback in a serpentine grassland. Ecology 84:323–336

    Article  Google Scholar 

  • Chaney RL, Chen KY, Li YM, Angle JS, Baker AJM (2008) Effects of calcium on nickel tolerance and accumulation in Alyssum species and cabbage grown in nutrient solution. Plant Soil 311:131–140

    Article  CAS  Google Scholar 

  • Chen CY, Huang DJ, Liu JQ (2009) Functions and toxicity of nickel in plants: recent advances and future prospects. Clean-Soil Air Water 37:304–313

    Article  CAS  Google Scholar 

  • Doherty JH, Ji BM, Casper BB (2008) Testing nickel tolerance of Sorghastrum nutans and its associated soil microbial community from serpentine and prairie soils. Environ Pollut 151:593–598

    Article  CAS  PubMed  Google Scholar 

  • Doubková P, Suda J, Sudová R (2011) Arbuscular mycorrhizal symbiosis on serpentine soils: the effect of native fungal communities on different Knautia arvensis ecotypes. Plant Soil 345:325–338

    Article  Google Scholar 

  • Doubková P, Suda J, Sudová R (2012) The symbiosis with arbuscular mycorrhizal fungi contributes to plant tolerance to serpentine edaphic stress. Soil Biol Biochem 44:56–64

    Article  Google Scholar 

  • Doubková P, Vlasáková E, Sudová R (2013) Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on Knautia arvensis plants in serpentine soil. Plant Soil 370:149–161

    Article  Google Scholar 

  • Drazkiewicz M, Baszynski T (2010) Interference of nickel with the photosynthetic apparatus of Zea mays. Ecotox Environ Safe 73:982–986

    Article  CAS  Google Scholar 

  • Gabbrielli R, Pandolfini T (1984) Effect of Mg2+ and Ca2+ on the response to nickel toxicity in a serpentine endemic and nickel-accumulating species. Physiol Plantarum 62:540–544

    Article  CAS  Google Scholar 

  • Gerdemann JW, Nicolson TH (1962) Endogone spores in cultivated soils. Nature 195:308–309

    Article  Google Scholar 

  • Ghasemi R, Ghaderian SM (2009) Responses of two populations of an Iranian nickel-hyperaccumulating serpentine plant, Alyssum inflatum Nyar., to substrate Ca/Mg quotient and nickel. Environ Exp Bot 67:260–268

    Article  CAS  Google Scholar 

  • Gryndler M, Vejsadová H, Vančura V (1992) The effect of magnesium ions on the vesicular–arbuscular mycorrhizal infection of maize roots. New Phytol 122:455–460

    Article  CAS  Google Scholar 

  • Jarstfer AG, Farmer-Koppenol P, Sylvia DM (1998) Tissue magnesium and calcium affect arbuscular mycorrhiza development and fungal reproduction. Mycorrhiza 7:237–242

    Article  CAS  PubMed  Google Scholar 

  • Ji BM, Bentivenga SP, Casper BB (2010) Evidence for ecological matching of whole AM fungal communities to the local plant–soil environment. Ecology 91:3037–3046

    Article  PubMed  Google Scholar 

  • Kaplan Z (1998) Relict serpentine populations of Knautia arvensis s. l. (Dipsacaceae) in the Czech Republic and an adjacent area of Germany. Preslia 70:21–31

    Google Scholar 

  • Kazakou E, Dimitrakopoulos PG, Baker AJM, Reeves RD, Troumbis AY (2008) Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev 83:495–508

    CAS  PubMed  Google Scholar 

  • Kolář F, Štech M, Trávníček P, Rauchová J, Urfus T, Vít P, Kubešová M, Suda J (2009) Towards resolving the Knautia arvensis agg. (Dipsacaceae) puzzle: primary and secondary contact zones and ploidy segregation at landscape and microgeographic scales. Ann Bot – London 103:963–974

    Google Scholar 

  • Kolář F, Dortová M, Lepš J, Pouzar M, Krejčová A, Štech M (2013) Serpentine ecotypic differentiation in a polyploid plant complex: shared tolerance to Mg and Ni stress among di- and tetraploid serpentine populations of Knautia arvensis (Dipsacaceae). Plant Soil. doi:10.1007/s11104-013-1813-y

    Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA-mycorrhizas. Mycol Res 92:486–505

    Article  Google Scholar 

  • Krupa Z, Baranowska M, Orzot D (1996) Can anthocyanins be considered as heavy metal stress indicator in higher plants? Acta Physiol Plant 18:147–151

    CAS  Google Scholar 

  • Lagrange A, Ducousso M, Jourand P, Majorel C, Amir H (2011) New insights into the mycorrhizal status of Cyperaceae from ultramafic soils in New Caledonia. Can J Microbiol 57:21–28

    Article  CAS  PubMed  Google Scholar 

  • Maksymiec W, Baszynski T (1999) The role of Ca2+ ions in modulating changes induced in bean plants by an excess of Cu2+ ions. Chlorophyll fluorescence measurements. Physiol Plantarum 105:562–568

    Article  CAS  Google Scholar 

  • Malcová R, Gryndler M, Vosátka M (2002) Magnesium ions alleviate the negative effect of manganese on Glomus claroideum BEG23. Mycorrhiza 12:125–129

    Article  PubMed  Google Scholar 

  • Marschner H (2002) Mineral nutrition in higher plants. Academic, London

  • Martínez-Peñalver A, Reigosa MJ, Sánchez-Moreiras AM (2011) Imaging chlorophyll a fluorescence reveals specific spatial distributions under different stress conditions. Flora 206:836–844

    Article  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Mesjasz-Przybylowicz J, Barnabas A, Przybylowicz W (2007) Comparison of cytology and distribution of nickel in roots of Ni-hyperaccumulating and non-hyperaccumulating genotypes of Senecio coronatus. Plant Soil 293:61–78

    Article  CAS  Google Scholar 

  • Moradi AB, Swoboda S, Robinson B, Prohaska T, Kaestner A, Oswald SE, Wenzel WW, Schulin R (2010) Mapping of nickel in root cross-sections of the hyperaccumulator plant Berkheya coddii using laser ablation ICP-MS. Environ Exp Bot 69:24–31

    Article  CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    Article  CAS  Google Scholar 

  • Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M (2009) Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol 181:950–959

    Article  CAS  PubMed  Google Scholar 

  • Nagy L, Proctor J (1997) Soil Mg and Ni as causal factors of plant occurrence and distribution at the Meikle Kilrannoch ultramafic site in Scotland. New Phytol 135:561–566

    Article  CAS  Google Scholar 

  • Nyberg Berglund ABN, Dahlgren S, Westerbergh A (2003) Evidence for parallel evolution and site-specific selection of serpentine tolerance in Cerastium alpinum during the colonization of Scandinavia. New Phytol 161:199–209

    Article  Google Scholar 

  • O’Dell RE, Rajakaruna N (2011) Intraspecific variation, adaptation, and evolution. In: Harrison S, Rajakaruna N (eds) Serpentine: evolution and ecology in a model system. UC Press, California, pp 97–137

    Google Scholar 

  • Orlowska E, Przybylowicz W, Orlowski D, Turnau K, Mesjasz-Przybylowicz J (2011) The effect of mycorrhiza on the growth and elemental composition of Ni-hyperaccumulating plant Berkheya coddii Roessler. Environ Pollut 159:3730–3738

    Article  CAS  PubMed  Google Scholar 

  • Ouzounidou G, Moustakas M, Lannoye R (1995) Chlorophyll fluorescence and photoacoustic characteristics in relationship to changes in chlorophyll and Ca2+ content of a Cu-tolerant Silene compacta ecotype under Cu treatment. Physiol Plantarum 93:551–557

    Article  CAS  Google Scholar 

  • Penuelas J, Filella I (1998) Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci 3:151–156

    Article  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwarzott D, Walker C, Schüssler A (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. Mol Phylogenet Evol 21:190–197

    Article  CAS  PubMed  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. Russ J Plant Physl 53:257–277

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic, Cambridge

    Google Scholar 

  • Soudek P, Petrová Š, Vaněk T (2011) Heavy metal uptake and stress responses of hydroponically cultivated garlic (Allium sativum L.). Environ Exp Bot 74:289–295

    Article  CAS  Google Scholar 

  • Taylor SI, Levy F (2002) Responses to soils and a test for preadaptation to serpentine in Phacelia dubia (Hydrophyllaceae). New Phytol 155:437–447

    Article  Google Scholar 

  • Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190

    Article  PubMed  Google Scholar 

  • Vivas A, Biró B, Németh T, Barea JM, Azcón R (2006) Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biol Biochem 38:2694–2704

    Article  CAS  Google Scholar 

  • Wan GL, Najeeb U, Jilani G, Naeem MS, Zhou W (2011) Calcium invigorates the cadmium-stressed Brassica napus L. plants by strengthening their photosynthetic system. Environ Sci Pollut R 18:1478–1486

    Article  CAS  Google Scholar 

  • Wang P, Zhou DM, Peijnenburg WJGM, Li LZ, Weng N (2010) Evaluating mechanisms for plant-ion (Ca2+, Cu2+, Cd2+ or Ni2+) interactions and their effectiveness on rhizotoxicity. Plant Soil 334:277–288

    Article  CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Grant Agency of the Academy of Sciences of the Czech Republic (project KJB600050812) is gratefully acknowledged. Additional support was supplied by the Academy of Sciences of the Czech Republic (a long-term research development project no. RVO 67985939) and by Charles University in Prague (project SVV 265203/2012). The authors would like to thank M. Albrechtová and her team from the analytical laboratory of the Institute of Botany AS CR for their chemical analyses of plant biomass. Valuable comments of the anonymous reviewers on the earlier version of the manuscript are also highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavla Doubková.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 526 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doubková, P., Sudová, R. Nickel tolerance of serpentine and non-serpentine Knautia arvensis plants as affected by arbuscular mycorrhizal symbiosis. Mycorrhiza 24, 209–217 (2014). https://doi.org/10.1007/s00572-013-0532-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-013-0532-9

Keywords

Navigation