Skip to main content
Log in

The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by Tomato yellow leaf curl Sardinia virus (TYLCSV)

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The arbuscular mycorrhizal (AM) symbiosis is considered a natural instrument to improve plant health and productivity since mycorrhizal plants often show higher tolerance to abiotic and biotic stresses. However, the impact of the AM symbiosis on infection by viral pathogens is still largely uncertain and little explored. In the present study, tomato plants were grown under controlled conditions and inoculated with the AM fungus Funneliformis mosseae. Once the mycorrhizal colonization had developed, plants were inoculated with the Tomato yellow leaf curl Sardinia virus (TYLCSV), a geminivirus causing one of the most serious viral diseases of tomatoes in Mediterranean areas. Biological conditions consisted of control plants (C), TYLCSV-infected plants (V), mycorrhizal plants (M), and TYLCSV-infected mycorrhizal plants (MV). At the time of analysis, the level of mycorrhiza development and the expression profiles of mycorrhiza-responsive selected genes were not significantly modified by virus infection, thus indicating that the AM symbiosis was unaffected by the presence and spread of the virus. Viral symptoms were milder, and both shoot and root concentrations of viral DNA were lower in MV plants than in V plants. Overall F. mosseae colonization appears to exert a beneficial effect on tomato plants in attenuating the disease caused by TYLCSV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Accotto GP, Navas-Castillo J, Noris E, Moriones E, Louro D (2000) Typing of tomato yellow leaf curl viruses in Europe. Eur J Plant Pathol 106:179–186

    Article  Google Scholar 

  • Aroca R, Vernieri P, Ruiz-Lozano JM (2008) Mycorrhizal and non-mycorrhizal Lactuca sativa plants exhibit contrasting responses to exogenous ABA during drought stress and recovery. J Exp Bot 59:2029–2041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ascencio-Ibáñez JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, Hanley-Bowdoin L (2008) Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol 148:436–454

    Article  PubMed Central  PubMed  Google Scholar 

  • Balestrini R, Gómez-Ariza J, Lanfranco L, Bonfante P (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact 20:1055–1062

    Article  CAS  PubMed  Google Scholar 

  • Bekers GJ, Conrath U (2007) Priming for stress resistance: from the lab to the field. Curr Opin Plant Biol 10:425–431

    Article  Google Scholar 

  • Bonfante P, Anca I-A (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  CAS  PubMed  Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Gracia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ et al (2006) Priming: getting ready for battle. Mol Plant Microbe Interact 19:1062–1071

    Article  CAS  PubMed  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 11:1017–1028

    Article  CAS  Google Scholar 

  • Czosnek H (2007) Tomato yellow leaf curl virus disease. Management, molecular biology, breeding for resistance. Springer, Netherlands, ISBN: 978-1-4020-4768-8

    Book  Google Scholar 

  • D'Amelio R, Massa N, Gamalero E, D'Agostino G, Sampo S, Berta G, Faoro F et al (2007) Preliminary results on the evaluation of the effects of elicitors of plant resistance on chrysanthemum yellows phytoplasma infection. B Insectol 60:317–318

    Google Scholar 

  • Daft MJ, Okusanya BO (1973) Effect of Endogone mycorrhiza on plant growth. V. Influence of infection on the multiplication of viruses in tomato, petunia, strawberry. New Phytol 72:975–983

    Article  Google Scholar 

  • de la Peña E, Echeverría SR, van der Putten WH, Freitas H, Moens M (2006) Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytol 169:829–840

    Article  PubMed  Google Scholar 

  • Dehne HW (1982) Interaction between vesicular–arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72:1115–1119

    Google Scholar 

  • Fiorilli V, Catoni M, Miozzi L, Novero M, Accotto GP, Lanfranco L (2009) Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. New Phytol 184:975–987

    Article  CAS  PubMed  Google Scholar 

  • Fiorilli V, Catoni M, Francia D, Cardinale F, Lanfranco L (2011) The arbuscular mycorrhizal symbiosis reduces disease severity in tomato plants infected by Botrytis cinerea. J Plant Pathol 93:237–242

    Google Scholar 

  • Fritz M, Jakobsen I, Lyngkjaer MF, Thordal-Christensen H, Pons-Kuehnemann J (2006) Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 16:413–419

    Article  PubMed  Google Scholar 

  • García-Chapa M, Batlle A, Laviña A, Camprubí A, Estaún V, Calvet C (2004) Tolerance increase to pear decline phytoplasma in mycorrhizal OHF-333 pear rootstock. Acta Hort 657:437–441

    Google Scholar 

  • Gernns H, Von Alten H, Poehling HM (2001) Arbuscular mycorrhiza increased the activity of a biotrophic leaf pathogen—is a compensation possible? Mycorrhiza 11:237–243

    Article  CAS  Google Scholar 

  • Gomez-Ariza J, Balestrini R, Novero M, Bonfante P (2009) Cell-specific gene expression of phosphate transporters in mycorrhizal tomato roots. Biol Fert Soils 45:845–853

    Article  CAS  Google Scholar 

  • Hanssen IM, Lapidot M, Thomma BPHJ (2010) Emerging viral disease of tomato crops. Mol Plant Microbe Interact 23:539–548

    Article  CAS  PubMed  Google Scholar 

  • Hause B, Mrosk C, Isayenkov S, Strack D (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68:101–110

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Ton J (2008) Long-distance signalling in plant defence. Trends Plant Sci 13:264–272

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Medina MJ, Steinkellner S, Vierheilig H, Bote JAO, Garrido JMG (2007) Abscisic acid determines arbuscule development and functionality in the tomato arbuscular mycorrhiza. New Phytol 175:554–564

    Article  CAS  PubMed  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Commonwealth Bureau Technical Communication 22. Farnham Royal, Bucks, UK

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochemistry 68:139–146

    Article  CAS  PubMed  Google Scholar 

  • Ismail Y, Hijri M (2012) Arbuscular mycorrhization with Glomus irregulare induces expression of potato PR homologue genes in response to infection by Fusarium sambucinum. Funct Plant Biol 39:236–245

    Article  Google Scholar 

  • Jeske H (2009) Geminiviruses. Curr Top Microbiol Immunol 331:185–226

    CAS  PubMed  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming of plant defenses. J Chem Ecol 38:651–664

    Article  CAS  PubMed  Google Scholar 

  • Khaosaad T, García-Garrido JM, Steinkellner S, Vierheilig H (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39:727–734

    Article  CAS  Google Scholar 

  • Kheyr-Pour A, Bendahmane M, Matzeit V, Accotto GP, Crespi S, Gronenborn B (1991) Tomato yellow leaf curl virus from Sardinia is a whitefly-transmitted monopartite geminivirus. Nucleic Acids Res 19:6763–6769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kobra N, Jalil K, Youbert G (2009) Effects of three Glomus species as biocontrol agents against verticillium-induced wilt in cotton. J Plant Prot 49(185):189

    Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    Article  PubMed  Google Scholar 

  • Lanfranco L, Young JPV (2012) Genetic and genomic glimpses of the elusive arbuscular mycorrhizal fungi. Curr Opin Plant Biol 15:454–461

    Article  CAS  PubMed  Google Scholar 

  • Lapidot M, Friedmann M (2002) Breeding for resistance to whitefly-transmitted geminiviruses. Ann Appl Biol 140:109–127

    Article  Google Scholar 

  • Li HY, Yang GD, Shu HR, Yang YT, Ye BX, Nishida I, Zheng CC (2006) Colonization by the arbuscular mycorrhizal fungus Glomus versiforme induces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis rupr.), which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol 47:154–163

    Article  CAS  PubMed  Google Scholar 

  • Lingua G, D'Agostino G, Massa N, Antosiano M, Berta G (2002) Mycorrhiza-induced differential response to a yellows disease in tomato. Mycorrhiza 12:191–198

    Article  PubMed  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    Article  CAS  PubMed  Google Scholar 

  • López-Ráez JA, Verhage A, Fernández I, Garciá JM, Azcón-Aguilar C, Flors V, Pozo MJ (2010) Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J Exp Bot 61:2589–2601

    Article  PubMed Central  PubMed  Google Scholar 

  • Lozano-Durán R, Rosas-Díaz T, Usmaroli G, Luna AP, Taconnat L, Deng XW, Bejarano ER (2011) Geminiviruses subvert ubiquitination by altering CSN-mediated derubylation of SCF E3 ligase complexes and inhibit jasmonate signaling in Arabidopsis thaliana. Plant Cell 23:1014–1032

    Article  PubMed Central  PubMed  Google Scholar 

  • Mansoor S, Zafar Y, Briddon RW (2006) Geminivirus disease complexes: the threat is spreading. Trends Plant Sci 11:209–212

    Article  CAS  PubMed  Google Scholar 

  • Miozzi L, Catoni M, Fiorilli V, Philip MM, Accotto GP, Lanfranco L (2011) Arbuscular mycorrhizal symbiosis limits foliar transcriptional responses to viral infection and favors long-term virus accumulation. Mol Plant Microbe Interact 24:1562–1572

    Article  CAS  PubMed  Google Scholar 

  • Morilla G, Krenz B, Jeske H, Bejarano ER, Wege C (2004) Tete a tete of tomato yellow leaf curl virus and tomato yellow leaf curl Sardinia virus in single nuclei. J Virol 78:10715–10723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236–250

    Article  CAS  PubMed  Google Scholar 

  • Ozgonen H, Erkilic A (2007) Growth enhancement and Phytophthora blight (Phytophthora capsici leonian) control by arbuscular mycorrhizal fungal inoculation in pepper. Crop Prot 26:1682–1688

    Article  Google Scholar 

  • Penninckx I, Thomma B, Buchala A, Metraux JP, Broekaert WF (1998) Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2113

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pozo JM, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Jung SC, Lòpez-Ràez J, Azcón-Aguilar C (2010) Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress: the role of plant defence mechanisms. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function, 2nd edn. Springer, Heidelberg, pp 193–207

    Chapter  Google Scholar 

  • Rasmussen R (2001) Quantification on the LightCycler instrument. In: Meuer S, Wittwer C, Nakagawara K (eds) Rapid cycle real-time PCR: methods and applications. Springer, Heidelberg, pp 21–34

    Chapter  Google Scholar 

  • Rosendahl S (1985) Interactions between the vesicular-arbuscular mycorrhizal fungus Glomus fasciculatum and Aphanomyces euteiches root rot of peas. J Plant Physiol 144:31–40

    Google Scholar 

  • Salvioli A, Zouari I, Chalot M, Bonfante P (2012) The arbuscular mycorrhizal status has an impact on the transcriptome profile and amino acid composition of tomato fruit. BMC Plant Biol 12:1–12

    Article  Google Scholar 

  • Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defence responses in Arabidopsis revealed by microarray analysis. PNAS USA 97:11655–11660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shaul O, Galili S, Volpin H, Ginzberg I, Elad Y, Chet I, Kapulnik Y (1999) Mycorrhiza-induced changes in disease severity and PR protein expression in tobacco leaves. Mol Plant Microbe Interact 12:1000–1007

    Article  CAS  PubMed  Google Scholar 

  • Slezack S, Dumas-Gaudot E, Paynot M, Gianinazzi S (2000) Is a fully established arbuscular mycorrhizal symbiosis required for bioprotection of Pisum sativum roots against Aphanomyces euteiches? Mol Plant Microbe Interact 13:238–241

    Article  CAS  PubMed  Google Scholar 

  • Taylor J, Harrier LA (2003) Expression studies of plant genes differentially expressed in leaf and root tissues of tomato colonised by the arbuscular mycorrhizal fungus Glomus mosseae. Plant Mol Biol 51:619–629

    Article  CAS  PubMed  Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Trouvelot A, Kough K, Gianinazzi-Pearson V (1986) Measure du taux de mycorrhization VA d'un système radiculaire. Proceedings of the 1st ESM 217–221. INRA Presse, Paris

    Google Scholar 

  • Utkhede R (2006) Increased growth and yield of hydroponically grown greenhouse tomato plants inoculated with arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. Radicis-lycopersici. Biocontrol 51:393–400

    Article  Google Scholar 

  • Van der Heijden MGA, Sanders IR (2002) Mycorrhizal ecology. Springer, Berlin

    Google Scholar 

  • Varma A, Malathi VG (2003) Emerging geminivirus problems: a serious threat to crop production. Ann Appl Biol 142:145–164

    Article  CAS  Google Scholar 

  • Veresoglou SD, Rillig MC (2012) Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol Lett 8:214–217

    Article  PubMed Central  PubMed  Google Scholar 

  • Vos C, Schouteden N, van Tuinen D, Chatagnier O, Elsen A, De Waele D, Panis B, Gianinazzi-Pearson V (2013) Mycorrhiza-induced resistance against the root-knot nematode Meloidogyne incognita involves priming of defense gene responses in tomato. Sol Biol Biochem 60:45–54

    Article  CAS  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Xu GH, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama KG, Levy AA, Silber A (2007) Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression. J Exp Bot 58:2491–2501

    Article  CAS  PubMed  Google Scholar 

  • Yang JY, Iwasaki M, Machida C, Machida Y, Zhou X, Chua NH (2008) βC1, the pathogenicity factor of TYLCCNV, interacts with AS1 to alter leaf development and suppress selective jasmonic acid responses. Genes Dev 22:2564–2577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Fondazione CRT for funding in part the PhD fellowship of GM. This work was supported by the CISIA Project (CNR, Italy) and by the “GenoPom” project (MIUR, Italy) to GPA and by the “60 % University grant” to LL. We are grateful to M. Vecchiati for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian Paolo Accotto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maffei, G., Miozzi, L., Fiorilli, V. et al. The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by Tomato yellow leaf curl Sardinia virus (TYLCSV). Mycorrhiza 24, 179–186 (2014). https://doi.org/10.1007/s00572-013-0527-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-013-0527-6

Keywords

Navigation