Skip to main content
Log in

Contrasting preferences of arbuscular mycorrhizal and dark septate fungi colonizing boreal and subarctic Avenella flexuosa

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungi are ubiquitous in grass roots, but their colonizations may vary according to latitudinal gradient and site conditions. We investigated how vegetation zone (boreal vs. subarctic), humus thickness, and site openness affect root fungal colonizations of the grass Avenella flexuosa. More precisely, we hypothesized that AM and DSE fungal colonizations would have different responses to environmental conditions such that AM fungi could be more common in boreal zone, whereas we expected DSE fungi to be more affected by the amount of humus. We found site openness to affect AM and DSE fungi in a contrasting manner, in interaction with the vegetation zone. AM colonization was high at open coastal dunes, whereas DSE fungi were more common at forested sites, in the boreal zone. Humus thickness affected AM fungi negatively and DSE fungi positively. To conclude, the observed AM and DSE fungal colonization patterns were largely contrasting. AM fungi were favored in seashore conditions characterized by thin humus layer, whereas DSE fungi were favored in conditions of higher humus availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Addy HD, Piercey MM, Currah RS (2005) Microfungal endophytes in roots. Can J Bot 83:1–13

    Article  Google Scholar 

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79:439–449

    Article  Google Scholar 

  • Barrow JR, Aaltonen RE (2001) Evaluation of the internal colonization of Atriplex canescens (Pursh) Nutt. roots by dark septate fungi and the influence of host physiological activity. Mycorrhiza 11:199–205

    Article  Google Scholar 

  • Barrow JR (2003) Atypical morphology of dark septate fungal root endophytes of Bouteloua in arid southwestern USA rangelands. Mycorrhiza 13:239–247

    Article  CAS  PubMed  Google Scholar 

  • Bjorbækmo MFM, Carlsen T, Brysting A, Vrålstadl T, Høiland K, Ugland KI, Geml J, Schumacher T, Kauserud H (2010) High diversity of root associated fungi in both alpine and arctic Dryas octopetala. BMC Plant Biol 10:244

    Article  PubMed Central  PubMed  Google Scholar 

  • Caldwell BA, Jumpponen A, Trappe JM (2000) Utilization of major detrital substrates by dark-septate root endophytes. Mycologia 92:230–232

    Article  Google Scholar 

  • Chen J, Saunders SC, Crow TR, Naiman RJ, Brosofske KD, Mroz GD, Brookshire BL, Franklin JF (1999) Microclimate in forest ecosystem and landscape ecology. BioScience 49:288–297

    Article  Google Scholar 

  • Chmura D, Gucwa-Przepiora E (2012) Interactions between arbuscular mycorrhiza and the growth of the invasive alien annual Impatiens parviflora DC: a study of forest type and soil properties in nature reserves (S Poland). Appl Soil Ecol 62:71–80

    Article  Google Scholar 

  • Claridge A, Barry S, Cork S, Trappe J (2000) Diversity and habitat relationships of hypogeous fungi. II. Factors influencing the occurrence and number of taxa. Biodivers Conserv 9:175–201

    Article  Google Scholar 

  • Closa I, Goicoechea N (2011) Infectivity of arcuscular mycorrhizal fungi in naturally regenerating, unmanaged and clear-cut beech forests. Pedosphere 21:65–74

    Article  Google Scholar 

  • Coûteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends Ecol Evol 10:63–66

    Article  PubMed  Google Scholar 

  • Crawley MJ (2013) The R book, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Daft MJ, Nicolson TH (1974) Arbuscular mycorrhizas in plants colonizing coal wastes in Scotland. New Phytol 73:1129–1138

    Article  Google Scholar 

  • Dhillion SS (1994) Ectomycorrhizae, arbuscular mycorrhizae, and Rhizoctonia sp. of alpine and boreal Salix spp. in Norway. Arctic and Alpine Res 26:304–307

    Article  Google Scholar 

  • Drebs A, Nordlund A, Karlsson P, Helminen J, Rissanen P (2002) Climatological statistics of Finland 1971–2000. Finnish Meteorological Institute, Helsinki, Finland

    Google Scholar 

  • Grau O, Rautio P, Heikkinen J, Saravesi K, Kozlov MV, Markkola AM (2010) An ericoid shrub plays a dual role in recruiting both pines and their fungal symbionts along primary succession gradients. Oikos 119:1727–1734

    Article  Google Scholar 

  • Grimmond CSB, Robeson SM, Schoof JT (2000) Spatial variability of micro-climate conditions within a midlatitude deciduous forest. Climate Res 15:137–149

    Article  Google Scholar 

  • Göransson P, Olsson PA, Postma J, Falkengren-Grerup U (2008) Colonisation by arbuscular mycorrhizal and fine endophytic fungi in four woodland grasses—variation in relation to pH and aluminium. Soil Biol Biochem 40:2260–2265

    Article  Google Scholar 

  • Haselwandter K, Read DJ (1980) Fungal associations of roots of dominant and subdominant plants in high-alpine vegetation systems with special reference to mycorrhiza. Oecologia 45:57–62

    Article  Google Scholar 

  • Haselwandter K, Read DJ (1982) The significance of a root fungus association in two Carex species of high-alpine plant communities. Oecologia 53:352–354

    Article  Google Scholar 

  • Hellemaa P (1998) The development of coastal dunes and their vegetation in Finland. Fennia 176:111–221

    Google Scholar 

  • Hobbie SE (1996) Temperature and plant species control over litter decomposition in Alaska tundra. Ecol Monogr 66:502–522

    Article  Google Scholar 

  • Jauhiainen E (1969) On soils in the boreal coniferous region, central Finland, Lapland, northern Poland. Fennia 98:1–123

    Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Article  Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes—are they mycorrhizal? Mycorrhiza 11:207–211

    Article  Google Scholar 

  • Järvinen A (1987) Basic climatological data on the Kilpisjärvi area, NW Finnish Lapland. Kilpisjärvi Notes 10:1–16

    Google Scholar 

  • Kalliola R (1973) Suomen kasvimaantiede. [Finnish goebotany] (In Finnish), WSOY, Helsinki

  • Kjelvik S, Kärenlampi L (1975) Plant biomass and primary production of Fennoscandian subarctic and subalpine forests and of alpine willow and heath ecosystem. In: Wielgolaski FE (ed) Fennoscandian tundra ecosystems. Part 1. Plants and microorganisms. Springer, Berlin, pp 111–120

    Chapter  Google Scholar 

  • Koske RE, Gemma JN (1997) Mycorrhizae and succession in plantings of beachgrass in sand dunes. Am J Bot 84:118–130

    Article  Google Scholar 

  • Koske RE, Gemma JN, Corkidi L, Sigüenza C, Rincón E (2004) Arbuscular mycorrhizas in coastal dunes. In: Martínez ML, Psuty NP (eds) Ecological Studies, vol 171. Coastal Dunes, Ecology and Conservation, Springer-Verlag Berlin Heidelberg, pp 173–184

    Google Scholar 

  • Kyllönen H (1988) Alpine and subalpine vegetation at Kilpisjärvi, Finnish Lapland: distribution of biomass and net production and annual variations in biomass. University of Oulu, Dissertation

    Google Scholar 

  • Kytöviita MM (2005) Asymmetric symbiont adaptation to Arctic conditions could explain why high Arctic plants are non-mycorrhizal. FEMS Microbiol Ecol 53:27–32

    Article  PubMed  Google Scholar 

  • Li L, Yang A, Zhao Z (2005) Seasonality of arbuscular mycorrhizal symbiosis and dark septate endophytes in a grassland site in southwest China. FEMS Microbiol Ecol 54:367–373

    Article  CAS  Google Scholar 

  • Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol 53:173–189

    Article  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Menkis A, Allmer J, Vasiliauskas R, Lygis V, Stenlid J, Finlay R (2004) Ecology and molecular characterization of dark septate fungi from roots, living stems, coarse and fine woody debris. Mycol Res 108:965–973

    Article  CAS  PubMed  Google Scholar 

  • Morecroft MD, Taylor ME, Olive HR (1998) Air and soil microclimates of deciduous woodland compared with an open site. Agr For Meteorol 90:141–156

    Article  Google Scholar 

  • Newsham KK (1999) Phialophora graminicola, a dark septate fungus, is a beneficial associate of the grass Vulpia ciliate ssp. ambigua. New Phytol 144:517–524

    Article  Google Scholar 

  • Newsham KK (2011) A meta-analysis of plant responses to dark septate root endophytes. New Phytol 190:783–793

    Article  CAS  PubMed  Google Scholar 

  • Nilsson M-C, Wardle DA (2005) Understorey vegetation as a forest ecosystem driver: evidence from the northern Swedish boreal forest. Front Ecol Environ 3:421–428

    Article  Google Scholar 

  • Pennanen T, Strömmer R, Markkola AM, Fritze H (2001) Microbial and plant community structure across a primary succession gradient. Scand J For Res 16:37–43

    Article  Google Scholar 

  • Pennisi E (2003) Fungi shield new host plant from heat and drought. Science 301:1466

    CAS  Google Scholar 

  • Peterson RL, Ashford AE, Allaway WG (1985) Vesicular-arbuscular mycorrhizal associations of vascular plants on Heron Island. A great barrier reef coral cay. Aust J Bot 33:669–676

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–160

    Article  Google Scholar 

  • Postma J, Olsson PA, Falkengren-Grerup U (2007) Colonisation of arbuscular mycorrhizal, fine and dark septate endophytic fungi in forbs of acid deciduous forests. Soil Biol Biochem 39:400–408

    Article  CAS  Google Scholar 

  • Prescott CE (2002) The influence of forest canopy on nutrient cycling. Tree Physiol 22:1193–1200

    Article  CAS  PubMed  Google Scholar 

  • R Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. Available at http://www.R-project.org

  • Rodríguez-Echeverría S, Freitas H (2006) Diversity of AMF associated with Ammophila arenaria ssp. arundinacea in Portuguese sand dunes. Mycorrhiza 16:543–552

    Article  PubMed  Google Scholar 

  • Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353

    Article  CAS  Google Scholar 

  • Ruotsalainen AL, Väre H, Vestberg M (2002) Seasonality of root fungal colonization in low-alpine herbs. Mycorrhiza 12:29–36

    Article  CAS  PubMed  Google Scholar 

  • Ruotsalainen AL, Markkola A, Kozlov MV (2007) Root fungal colonisation in Deschampsia flexuosa: effects of pollution and neighbouring trees. Environ Pollut 147:723–728

    Article  CAS  PubMed  Google Scholar 

  • Ruotsalainen AL, Markkola AM, Kozlov MV (2010) Birch effects on root fungal colonisation of crowberry are uniform along different environmental gradients. Basic Appl Ecol 11:459–467

    Article  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Sigüenza C, Espejel I, Allen EB (1996) Seasonality of mycorrhizae in coastal sand dunes of Baja California. Mycorrhiza 6:151–157

    Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Tejesvi MV, Ruotsalainen AL, Markkola AM, Pirttilä AM (2010) Root fungal endophytes along a primary succession gradient in northern Finland. Fungal Divers 41:125–134

    Article  Google Scholar 

  • Upson R, Read DJ, Newsham KK (2009) Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes. Mycorrhiza 20:1–11

    Article  PubMed  Google Scholar 

  • Usuki F, Narisawa K (2007) A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a nonmycorrhizal plant, Chinese cabbage. Mycologia 99:175–184

    Article  CAS  PubMed  Google Scholar 

  • Varga S, Kytöviita MM (2008) Sex-specific responses to mycorrhiza in a dioecious species. Am J Bot 95:1225–1232

    Article  PubMed  Google Scholar 

  • von Arx G, Dobbertin M, Rebetez M (2012) Spatio-temporal effects of forest canopy on understorey microclimate in a long-term experiment in Switzerland. Agr Forest Meteorol 166:144–155

    Article  Google Scholar 

  • Väre H, Vestberg M, Eurola S (1992) Mycorrhiza and root associated fungi in Spitsbergen. Mycorrhiza 1:93–104

    Article  Google Scholar 

  • Väre H, Vestberg M, Ohtonen R (1997) Shifts in mycorrhiza and microbial activity along an oroarctic altitudinal gradient in northern Fennoscandia. Arctic and Alpine Res 29:93–104

    Article  Google Scholar 

  • Waring RH, Running SW (1998) Forest ecosystems-analysis at multiple scales, 2nd edn. Academic, San Diego

    Google Scholar 

  • Wielgolaski FE (ed) (2001) Nordic mountain birch ecosystems. Man and the Biosphere Series, 27. The Parthenon Publishing Group, New York

    Google Scholar 

  • Willis A, Rodrigues BF, Harris PJC (2013) The ecology of arbuscular mycorrhizal fungi. Crit Rev Plant Sci 32:1–20

    Article  Google Scholar 

  • Yu T, Nassuth A, Peterson RL (2001) Characterization of the interaction between the dark septate fungus Phialocephala fortinii and Aspargus officinalis roots. Can J Microbiol 47:741–753

    Article  CAS  PubMed  Google Scholar 

  • Zvereva EL, Kozlov MV (2004) Facilitative effects of woody plants on four dwarf shrub species in habitats severely disturbed by pollution. J Ecol 92:288–296

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Kari Saikkonen and Juha Tuomi for their comments on the manuscript and the Botanical Museum and Botanical Garden of the University of Oulu for the use of their technical facilities. This research was supported by grants from the Academy of Finland (project no. 122092 and 138309), the Emil Aaltonen Foundation, the Oulun läänin talousseuran maatalous Foundation, the Natural History Society of Oulu, and the Olvi Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kauppinen.

Appendix 1

Appendix 1

Table 2 Collection site characteristics of Avenella flexuosa in Kilpisjärvi and in Oulu. pH and conductivity were measured from the humus layer. C/N was not determined in 2008. ETRS-TM35FIN was used as the coordinate system

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauppinen, M., Raveala, K., Wäli, P.R. et al. Contrasting preferences of arbuscular mycorrhizal and dark septate fungi colonizing boreal and subarctic Avenella flexuosa . Mycorrhiza 24, 171–177 (2014). https://doi.org/10.1007/s00572-013-0526-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-013-0526-7

Keywords

Navigation