Skip to main content
Log in

New evidence for the symbiosis between Tuber aestivum and Picea abies

  • Short Note
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The Burgundy truffle (Tuber aestivum Vittad.), an ectomycorrhizal fungus living in association with host plants, is one of the most exclusive delicacies. The symbiosis with deciduous oak, beech, and hazel dominates our concept of truffle ecophysiology, whereas potential conifer hosts have rarely been reported. Here, we present morphological and molecular evidence of a wildlife T. aestivum symbiosis with Norway spruce (Picea abies Karst.) and an independent greenhouse inoculation experiment, to confirm our field observation in southwest Germany. A total of 27 out of 50 P. abies seedlings developed T. aestivum ectomycorrhizae with a mean mycorrhization rate of 19.6 %. These findings not only suggest P. abies to be a productive host species under suitable biogeographic conditions but also emphasize the broad ecological amplitude and great symbiotic range of T. aestivum. While challenging common knowledge, this study demonstrates a significant expansion of the species' cultivation potential to the central European regions, where P. abies forests occur on calcareous soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Agerer R (1987–2006) Colour atlas of ectomycorrhizae – With glossary. Schwäbisch-Gmünd: Einhorn-Verlag

  • Bonito GM, Gryganskyi AP, Trappe JM, Vilgalys R (2010) A global meta-analysis of Tuber ITS rDNA sequences: species diversity, host associations, and long distance dispersal. Mol Ecol 19:4994–5008. doi:10.1111/j.1365-294X.2010.04855.x

    Article  PubMed  CAS  Google Scholar 

  • Brunner I, Brodbeck S, Büchler U, Sperisen C (2001) Molecular identification of fine roots of trees from the Alps: reliable and fast DNA extraction and PCR-RFLP analyses of plastid DNA. Mol Ecol 10:2079–2087. doi:10.1046/j.1365-294X.2001.01325.x

    Article  PubMed  CAS  Google Scholar 

  • Bruns TD, Bidartondo MI, Taylor L (2002) Host specificity in ectomycorrhizal communities: what do the exceptions tell us? Integ Comp Biol 42:352–359. doi:10.1093/icb/42.2.352

    Article  Google Scholar 

  • Büntgen U, Tegel W, Egli S, Stobbe U, Sproll L, Stenseth NC (2011) Truffles and climate change. Front Ecol Environ 9:150–151. doi:10.1890/11.WB.004

    Article  Google Scholar 

  • Chevalier G, Frochot H (1989) Ecology and possibility of culture in Europe of the Burgundy truffle (Tuber uncinatum Chatin). Agric Ecosyst Environ 28:71–73. doi:10.1016/0167-8809(90)90016-7

    Article  Google Scholar 

  • Ellenberg H (1988) Vegetation ecology of Central Europe, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Fischer C, Colinas C (1996) Methology for certification of Quercus ilex seedlings inoculated with Tuber melanosporum for commercial application. First International Conference on Mycorrhiza, Aug. 4–9, 1996, Berkeley, CA

  • Gryndler M, Hrselova H, Soukupova L, Streiblova E, Valda S, Borovicka J, Gryndlerova H, Gazo J, Miko M (2011) Detection of summer truffle (Tuber aestivum Vittad.) in ectomycorrhizae and in soil using specific primers. FEMS Microbiol Lett 318:84–91. doi:10.1111/j.1574-6968.2011.02243.x

    Article  PubMed  CAS  Google Scholar 

  • Hall IR, Yun W, Amicucci A (2003) Cultivation of edible ectomycorrhizal mushrooms. Trends Biotechnol 21(10):433–437. doi:10.1016/S0167-7799(03)00204-X

    Article  PubMed  CAS  Google Scholar 

  • Hilszczanska D, Sierota Z, Palenzona M (2008) New Tuber species found in Poland. Mycorrhiza 18(4):223–226. doi:10.1007/s00572-008-0175-4

    Google Scholar 

  • Lehto T (1994) Effects of soil pH and calcium on mycorrhizas of Picea abies. Plant Soil 163:69–75. doi:10.1007/BF00033942

    CAS  Google Scholar 

  • Mello A, Cantisani A, Vizzini A, Bonfante P (2002) Genetic variability of Tuber uncinatum and its relatedness to other black truffles. Environ Microbiol 4:584–594. doi:10.1046/j.1462-2920.2002.00343.x

    Article  PubMed  CAS  Google Scholar 

  • Mello A, Murat C, Vizzini A, Gavazza V, Bonfante P (2004) Tuber magnatum Pico, a species of limited geographical distribution: its genetic diversity inside and outside a truffle ground. Environ Microbiol 7(1):55–65. doi:10.1111/j.1462-2920.2004.00678.x

    Article  Google Scholar 

  • Miko M, Gazo J, Bratek Z (2008) Plant indicators for cultivation suitability of Burgundy truffle (Tuber aestivum Vitt.) in the Slovak Republic. Acta fytotechnica et zootechnica 2:36–41

    Google Scholar 

  • Pennisi E (2004) The Secret Life of Fungi. Science 304:1620–1622. doi:10.1126/science.304.5677.1620

    Article  PubMed  CAS  Google Scholar 

  • Schweingruber F (1990) Mikroskopische Holzanatomie—Formenspektren mitteleuropäischer Stamm- und Zweighölzer zur Bestimmung von rezentem und subfossilem Material, 3rd edn. Flück-Wirth, Teufen

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego

  • Spiecker H, Hansen J, Klimo E, Skovsgaard JP, Sterba H, von Teuffel K (2004) Norway P. abies conversion - options and consequences. Joensuu: European Forest Institute

  • Stobbe U, Büntgen U, Sproll L, Tegel W, Egli S, Fink S (2012) Spatial distribution and ecological variation of re-discovered German truffle habitats. Fungal Ecol 5:591–599. doi:10.1016/j.funeco.2012.02.001

    Google Scholar 

  • Streiblova E, Gryndlerova H, Valda S, Gryndler M (2010) Tuber aestivum —hypogeous fungus neglected in Czech Republic: a review. Czech Mycol 61(2):163–173

    Google Scholar 

  • Urban A, Pla T (2008) Truffles and Truffle Cultivation in Austria. In: La Culture De La Truffe Dans Le Monde, Acte du colloque, Brive la Gaillarde. 2. Fevrier 2007:19–34

  • Weden C, Pettersson L, Danell W (2009) Truffle cultivation in Sweden: Results from Quercus robur and Corylus avellana field trials on the island of Gotland. Scan J Forest Res 24:37–53. doi:10.1080/02827580802562056

    Article  Google Scholar 

Download references

Acknowledgments

Supported by the Eva Mayr-Stihl Foundation, the Gesellschaft zur Förderung der forst- und holzwirtschaftlichen Forschung an der Universität Freiburg and the WSL-internal Disentangeling Truffle Ecology (DITREC) project. We thank WSL and FoBot staff, D. Montwe, and S. Fink for their help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Stobbe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Sample sites I and II bearing fruit bodies of T. aestivum in pure P. abies stands (JPEG 2210 kb)

Fig. S2

Distinctive features of T. aestivum mycorrhiza on P. abies fine roots: (a) Mantle structure with typical angular cells. (b) Curly, red–brown, nonramified cystidia (JPEG 78 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stobbe, U., Stobbe, A., Sproll, L. et al. New evidence for the symbiosis between Tuber aestivum and Picea abies . Mycorrhiza 23, 669–673 (2013). https://doi.org/10.1007/s00572-013-0508-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-013-0508-9

Keywords

Navigation