Advertisement

Mycorrhiza

, Volume 22, Issue 8, pp 653–661 | Cite as

Impact of weed control on arbuscular mycorrhizal fungi in a tropical agroecosystem: a long-term experiment

  • José A. Ramos-Zapata
  • Denis Marrufo-Zapata
  • Patricia Guadarrama
  • Lilia Carrillo-Sánchez
  • Laura Hernández-Cuevas
  • Arturo Caamal-Maldonado
Original Paper

Abstract

Cover crop species represent an affordable and effective weed control method in agroecosystems; nonetheless, the effect of its use on arbuscular mycorrhizal fungi (AMF) has been scantily studied. The goal of this study was to determine root colonization levels and AMF species richness in the rhizosphere of maize plants and weed species growing under different cover crop and weed control regimes in a long-term experiment. The treatment levels used were (1) cover of Mucuna deeringian (Muc), (2) "mulch" of Leucaena leucocephala (Leu), (3) "mulch" of Lysiloma latisiliquum (Lys), (4) herbicide (Her), (5) manual weeding (CD), (6) no weeding (SD), and (7) no maize and no weeding (B). A total of 18 species of AMF belonging to eight genera (Acaulospora, Ambispora, Claroideoglomus, Funneliformis, Glomus, Rhizophagus, Sclerocystis, and Scutellospora) were identified from trap cultures. Muc and Lys treatments had a positive impact on AMF species richness (11 and seven species, respectively), while Leu and B treatments on the other hand gave the lowest richness values (six species each). AMF colonization levels in roots of maize and weeds differed significantly between treatment levels. Overall, the use of cover crop species had a positive impact on AMF species richness as well as on the percentage of root colonized by AMF. These findings have important implications for the management of traditional agroecosystems and show that the use of cover crop species for weed control can result in a more diverse AMF community which should potentially increase crop production in the long run.

Keywords

Weeds Herbicide Fallow Arbuscular mycorrhizal fungi Cover crop Mulch 

Notes

Acknowledgments

The authors would like to thank Héctor Cetina for laboratory and field work. This study was financially supported by the PRIORI program of the Universidad Autónoma de Yucatán, through the projects PRIORI-FMVZ-02-015 and PRIORI-FMVZ-04-010.

References

  1. Abd-Alla MH, Ahmed S, Karanxha S (2000) The impact of pesticides on arbuscular mycorrhizal and nitrogen-fixing symbioses in legumes. Appl Soil Ecol 14:191–200CrossRefGoogle Scholar
  2. Allen EB, West NE (1993) Nontarget effects of the herbicide tebuthiuron on mycorrhizal fungi in sagebrush semidesert. Mycorrhiza 3:75–78CrossRefGoogle Scholar
  3. Allen EB, Allen MF, Elm DJ, Trappe JM, Molina R, Rincón E (1995) Patterns of regulation of mycorrhizal plant and fungal diversity. Plant Soil 170:47–62CrossRefGoogle Scholar
  4. Allen EB, Rincón E, Allen MF, Pérez AJ, Huante P (1998) Disturbance and seasonal dynamics of mycorrhizae in a tropical deciduous forest in México. Biotropica 30:261–274CrossRefGoogle Scholar
  5. Allen EB, Allen MF, Egerton-Warburton L, Corkidi L, Gómez-Pompa A (2003) Impacts of early- and late-seral mycorrhizae during restoration in seasonal tropical forest, Mexico. Ecol Appl 13:1701–1717CrossRefGoogle Scholar
  6. Baumgartner K, Smith RF, Bettiga L (2005) Weed control and cover crop management affect mycorrhizal colonization of grapevine roots and arbuscular mycorrhizal fungal spore populations in a California vineyard. Mycorrhiza 15:111–119PubMedCrossRefGoogle Scholar
  7. Baumgartner K, Fujiyoshi P, Smith R, Bettiga L (2010) Weed flora and dormant-season cover crops have no effects on arbuscular mycorrhizae of grapevine. Weed Res 50:456–466CrossRefGoogle Scholar
  8. Bethlenfalvay GJ (1992) Mycorrhizae and crop productivity. In: Bethenfalvay GJ, Linderman RG (eds.) Mycorrhizae in sustainable agriculture. American Society of Agronomy, Madison, ppGoogle Scholar
  9. Bethlenfalvay GJ, Schreiner RP, Mihara KL, McDaniel H (1996) Mycorrhizae, biocides, and biocontrol. 2. Mycorrhizal fungi enhance weed control and crop growth in a soybean–cocklebur association treated with the herbicide bentazon. Appl Soil Ecol 3:205–214CrossRefGoogle Scholar
  10. Boddington CL, Dodd JC (2000a) The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. I. Field studies in an Indonesian ultisol. Plant Soil 218:137–144CrossRefGoogle Scholar
  11. Boddington CL, Dodd JC (2000b) The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. II. Studies in experimental microcosms. Plant Soil 218:145–157CrossRefGoogle Scholar
  12. Boswell EP, Koide RT, Shumway DL, Addy HD (1998) Winter wheat cover cropping, VA mycorrhizal fungi and maize growth and yield. Agric Ecosyst Environ 67:55–65CrossRefGoogle Scholar
  13. Brundrett MC, Bougher N, Bernie D, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Monografía ACIAR 32, CanberraGoogle Scholar
  14. Caamal-Maldonado A (1995) El uso de leguminosas como cobertura viva y muerta para el control de maleza en el cultivo de maíz, como alternativa al sistema roza-tumba-quema. Dissertation, CATIEGoogle Scholar
  15. Caamal-Maldonado A, Jiménez-Osornio JJ, Torres A, Anaya AL (2001) The use of allelopathic legume cover and mulch species for weed control in cropping systems. Agron J 93:27–36CrossRefGoogle Scholar
  16. Castellano M, Molina R (1989) Mycorrhizae. In: Landis TD, Tinus RW, McDonald SE, Barnett JP (eds.) The container tree nursery manual, vol. 5. Agric. Handbook. 674. U.S. Department of Agriculture, Forest Service, Washington, DC, pp. 101–167Google Scholar
  17. Cuenca G, De Andrade Z, Escalante G (1998) Diversity of Glomalean spores from natural, disturbed and revegetated communities growing on nutrient-poor tropical soils. Soil Biol Biochem 30:711–719CrossRefGoogle Scholar
  18. Daisog H, Sbrana C, Cristani C, Moonen AC, Giovannetti M, Bárberi P (2011) Arbuscular mycorrhizal fungi shift competitive relationships among crop and weed species. Plant Soil. doi: 10.1007/s11104-011-1040-3
  19. de Souza FA, Declerck S (2003) Mycelium development and architecture, and spore production of Scutellospora reticulata in monoxenic culture with Ri T-DNA transformed carrot roots. Mycologia 95:1004–1012PubMedCrossRefGoogle Scholar
  20. Deguchi S, Shimazaki Y, Uozumi S, Tawaraya K, Kawamoto H, Tanaka O (2007) White clover living mulch increases the yield of silage corn via arbuscular mycorrhizal fungus colonization. Plant Soil 291:291–299CrossRefGoogle Scholar
  21. Díaz-Garrido S, Bautista F, Delgado C, Castillo-González M (2005) Mapas parcelarios de suelos en Mérida, Yucatán, México. In: Bautista F, Palacio G (eds.) Caracterización y manejo de los suelos de la península de Yucatán. Implicaciones agropecuarias, forestales y ambientales. Universidad Autónoma de Campeche, Instituto Nacional de Ecología. Mérida, pp. 145–158Google Scholar
  22. Dodd JC (2000) The role of arbuscular mycorrhizal fungi in agro- and natural ecosystems. Outlook Agric 29:63–70CrossRefGoogle Scholar
  23. Douds DD, Millner P (1999) Biodiversity of arbuscular mycorrhizal fungi in agroecosystems. Agric Ecosyst Environ 74:77–93CrossRefGoogle Scholar
  24. Duponnois R, Plenchette C, Thioulouse J, Cadet P (2001) The mycorrhizal soil infectivity and arbuscular mycorrhizal fungal spore communities in soils of different aged fallows in Senegal. Appl Soil Ecol 17:239–251CrossRefGoogle Scholar
  25. Flores JS, Espejel I (1994) Tipos de vegetación de la península de Yucatán. Fascículo 3. Etnoflora Yucatanense. Facultad de Medicina Veterinaria y Zootecnia. Universidad Autónoma de Yucatán. MéridaGoogle Scholar
  26. Franke-Snyder M, Douds D, Galvez L, Phillips JG, Wagoner P, Drinkwater L, Morton JB (2001) Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl Soil Ecol 16:35–48CrossRefGoogle Scholar
  27. García E (1973) Modificaciones al sistema de clasificación climática de Köppen. Universidad Nacional Autónoma de México, MéxicoGoogle Scholar
  28. Gaur A, Adholeya A (1994) Estimation of VAMF spores in soil: a modified method. Mycorrhiza News 6:10–11Google Scholar
  29. Gavito ME, Miller MH (1998) Early phosphorus nutrition, mycorrhizae development, dry matter partitioning and yield of maize. Plant Soil 199:177–186CrossRefGoogle Scholar
  30. Gerdemann JW, Nicolson T (1963) Spores mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Brit Mycol Soc 42:235–244CrossRefGoogle Scholar
  31. Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530PubMedCrossRefGoogle Scholar
  32. Gosling P, Hodge A, Goodlass G, Bending GD (2006) Arbuscular mycorrhizal fungi and organic farming. Agric Ecosyst Environ 113:17–35CrossRefGoogle Scholar
  33. Guadarrama-Chávez P, Camargo-Ricalde SL, Hernández-Cuevas L, Castillo-Argüero S (2007) Los hongos micorrizógenos arbusculares de la región de Nizanda, Oaxaca, México. Bol Soc Bot Mex 81:133–139Google Scholar
  34. Houngnandan P, Sanginga N, Okogun A, Vanlauwe B, Merckx R, Van Cleemput O (2001) Assessment of soil factors limiting growth and establishment of Mucuna in farmers’ fields in the derived savanna of the Benin. Biol Fertil Soils 33:416–422CrossRefGoogle Scholar
  35. Johnson NC, Wedin DA (1997) Soil carbon, nutrients, and mycorrhizae during conversion of dry tropical forest to grassland. Ecol Appl 7:171–182CrossRefGoogle Scholar
  36. Johnson NC, Pfleger FL, Crookston RK, Simmons SR, Copeland PJ (1991) Vesicular–arbuscular mycorrhizae respond to corn and soybean cropping history. New Phytol 117:657–663CrossRefGoogle Scholar
  37. Johnson NC, Tilman D, Wedin D (1992) Plant and soil controls on mycorrhizal fungal communities. Ecology 73:2034–2042CrossRefGoogle Scholar
  38. Jordan NR, Zhang J, Huerd S (2000) Arbuscular–mycorrhizal fungi: potential roles in weed management. Weed Res 40:397–410CrossRefGoogle Scholar
  39. Kabir Z, Koide RT (2000) The effect of dandelion or cover crop on mycorrhiza inoculum potential soil aggregation and yield of maize. Agric Ecosyst Environ 78:167–174CrossRefGoogle Scholar
  40. Kurle JE, Pfleger FL (1994) The effects of cultural practices and pesticides on VAM fungi. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS, St. Paul, pp 101–131Google Scholar
  41. Kurle JE, Pfleger FL (1996) Management influences on arbuscular mycorrhizal fungal species composition in a corn–soybean rotation. Agron J 88:155–161CrossRefGoogle Scholar
  42. Landwehr M, Hildebrandt U, Wilde P, Nawrath K, Tóth T, Biró B, Bothe H (2002) The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza 12:199–211PubMedCrossRefGoogle Scholar
  43. Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read D (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045CrossRefGoogle Scholar
  44. Lekberg Y, Koide RT (2005) Arbuscular mycorrhizal fungi, rhizobia, available soil P and nodulation of groundnut (Arachis hypogaea) in Zimbabwe. Agric Ecosyst Environ 110:143–148CrossRefGoogle Scholar
  45. Magurran A (1989) Diversidad ecológica y su medición. Ediciones Vedrá, BarcelonaGoogle Scholar
  46. Mathimaran N, Ruh R, Jama B, Verchot L, Frossard E, Jansa J (2007) Impact of agricultural management on arbuscular mycorrhizal fungal communities in Kenyan ferralsol. Agric Ecosyst Environ 119:22–32CrossRefGoogle Scholar
  47. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular–arbuscular mycorrhizal. New Phytol 115:495–501CrossRefGoogle Scholar
  48. Menéndez AB, Scervino JM, Godeas AM (2001) Arbuscular mycorrhizal populations associated with natural and cultivated vegetation on a site of Buenos Aires province, Argentina. Biol Fertil Soils 33:373–381CrossRefGoogle Scholar
  49. Mohammad MJ, Pan WL, Kennedy AC (1998) Seasonal mycorrhizal colonization of winter wheat and its effect on wheat growth under dryland field conditions. Mycorrhiza 8:139–144CrossRefGoogle Scholar
  50. Mujica M, Fracchia S, Ocampo JA, Godeas A (1999) Influence of the herbicides Chlorsulfuron and Glyphosate on mycorrhizal soybean intercropped with the weeds Brassica campestris or Sorghum halepensis. Symbiosis 27:73–81Google Scholar
  51. Muthukumar K, Udaiyan T (2000) Arbuscular mycorrhizas of plants growing in the Western Ghats region, Southern India. Mycorrhiza 9:297–313CrossRefGoogle Scholar
  52. Ocampo JA, Barea JM (1982) Depressed metabolic activity of VA mycorrhizal fungi by photosynthesis inhibitor herbicides. In: Gianinazzi S, Gianinazzi-Pearson V, Trouvelot A (eds) Mycorrhizae, an integral part of plants: biology and perspectives for their use. INRA Publ. Colloq. 13, Dijon, pp 267–270Google Scholar
  53. Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microbiol 69:2816–2824PubMedCrossRefGoogle Scholar
  54. Oehl F, Sieverding E, Mäder P, Dubois D, Ineichen K, Boller T, Wiemken A (2004) Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi. Oecologia 138:574–583PubMedCrossRefGoogle Scholar
  55. Old KM, Nicolson TH, Redhead IF (1973) A new species of mycorrhizal Endogone from Nigeria with a distinctive spore wall. New Phytol 72:817–823CrossRefGoogle Scholar
  56. Pasaribu A, Mohamad RB, Awang Y, Othman R, Puteh A (2011) Growth and development of symbiotic arbuscular mycorrhizal fungi, Glomus mosseae (Nicol. and Gerd.), in alachlor and glyphosate treated soils. African J Biotechnol 10:11520–11526Google Scholar
  57. Phillips J, Hayman D (1970) Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for assessment of infection. Trans Br Mycol Soc 55:158–161CrossRefGoogle Scholar
  58. Pullaro TC, Marino PC, Jackson DM, Harrison HF, Keinath AP (2006) Effects of killed cover crop mulch on weeds, weed seeds, and herbivores. Agric Ecosyst Environ 115:97–104CrossRefGoogle Scholar
  59. Rinaudo V, Bárberi P, Giovanneti M, van der Heijden MGA (2010) Mycorrhizal fungi suppress aggressive agricultural weeds. Plant Soil 333:7–20CrossRefGoogle Scholar
  60. Rosemeyer M, Viaene N, Swarttz H, Kettler J (2000) The effect of slash/mulch and alley cropping bean production systems on soil microbiota in the tropics. Appl Soil Ecol 15:49–59CrossRefGoogle Scholar
  61. Schenck NC, Pérez Y (1990) Manual for the identification of VA mycorrhizal fungi, 3rd edn. Synergistic, GainesvilleGoogle Scholar
  62. Schroeder MS, Janos DP (2004) Phosphorus and intraspecific density alter plant responses to arbuscular mycorrhizas. Plant Soil 264:335–348CrossRefGoogle Scholar
  63. Schüβler A, Walker C (2010) The Glomeromycota. A species list with new families and new genera. The Royal Botanic Garden Kew, Kew (available at www.amf-phlogeny.com).
  64. Sieverding E (1983) Manual de métodos para la investigación de la micorriza vesículo-arbuscular en laboratorio. CIAT, CaliGoogle Scholar
  65. Sieverding E (1991) Vesicular–arbuscular mycorrhizal management in tropical agrosystems. Technical Cooperation, Federal Republic of GermanyGoogle Scholar
  66. Sjöberg G, Knicker H, Nilsson SI, Berggren D (2004) Impact of long-term N fertilization on the structural composition of spruce litter and mor humus. Soil Biol Biochem 36:609–618CrossRefGoogle Scholar
  67. Smith TF, Noack AJ, Cosh SM (1981) The effect of some herbicides on vesicular–arbuscular endophyte abundance in the soil and on infection of host roots. Pestic Sci 12:91–97CrossRefGoogle Scholar
  68. Trappe JM, Molina R, Castellano M (1984) Reactions of mycorrhizal fungi and Mycorrhiza formation to pesticides. Ann Rev Phytopathol 22:331–359CrossRefGoogle Scholar
  69. van der Heijden MGA (2002) Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search for underlying mechanisms and general principles. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology: ecological studies. Springer, Heidelberg, pp 243–265Google Scholar
  70. Varma A (1995) Ecophysiology and application of arbuscular mycorrhizal fungi in arid soils. In: Varma A, Hock B (eds) Mycorrhiza. Springer, Berlin, pp 561–591Google Scholar
  71. Veiga RSL, Jansa J, Frossard E, van der Heijden MGA (2011) Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds? PLoS ONE 6:e27825. doi: 10.1371/journal.pone.0027825 PubMedCrossRefGoogle Scholar
  72. Zar JH (1999) Biostatistical analysis, 4th edn. Prentice-Hall, New JerseyGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • José A. Ramos-Zapata
    • 1
  • Denis Marrufo-Zapata
    • 1
  • Patricia Guadarrama
    • 2
  • Lilia Carrillo-Sánchez
    • 3
  • Laura Hernández-Cuevas
    • 4
  • Arturo Caamal-Maldonado
    • 1
  1. 1.Departamento de Ecologia TropicalUniversidad Autónoma de YucatánMeridaMexico
  2. 2.Unidad Multidisciplinaria de Docencia e Investigación, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoSisalMexico
  3. 3.Departamento de Recursos NaturalesCentro de Investigación Científica de YucatánMéridaMexico
  4. 4.Laboratorio de Micorrizas, Centro de Investigación en Ciencias BiológicasUniversidad Autónoma de TlaxcalaTlaxcalaMexico

Personalised recommendations