Skip to main content
Log in

The sterol biosynthesis inhibitor molecule fenhexamid impacts the vegetative compatibility of Glomus clarum

  • Short Note
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The vegetative compatibility of the arbuscular mycorrhizal fungus (AMF) Glomus clarum MUCL 46238 was evaluated after continuous exposure to fenhexamid, a sterol biosynthesis inhibitor (SBI). Three lineages of this AMF were cultured in vitro for five generations in association with Ri T-DNA transformed carrot roots in the presence of 0, 5 or 10 mg l−1 of fenhexamid. Whatever the AMF generation, fenhexamid at 5 and 10 mg l−1 had no significant impact on the number of spores produced. However, vegetative compatibility tests (VCT) conducted with spores from the three lineages, in the presence of 10 mg l−1 of fenhexamid, impacted the anastomosis process. At this concentration, the morphology of the germ tubes was modified. In addition, nitrotetrazolium–trypan blue staining revealed that 10 mg l−l of fenhexamid significantly reduced the probability of fusion between the germ tubes regardless of the culture conditions (i.e. absence or presence of fenhexamid) preceding the VCT. Our results demonstrated that spore production was not affected by fenhexamid, while anastomosis between germ tubes was decreased. This suggested that high concentrations, accumulation or repeated application of this SBI fungicide may impact the community structure of AMF in soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Akhtar MS, Siddiqui AZ (2008) Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In: Siddiqui ZA, Akhtar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Heidelberg, pp 177–194

    Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Article  Google Scholar 

  • Bever JD, Morton JB (1999) Heritable variation of spore shape in a population of arbuscular mycorrhizal fungi: suggestions of a novel mechanism of inheritance. Am J Bot 86:1209–1216

    Article  CAS  PubMed  Google Scholar 

  • Bever JD, Kang H, Kaonongbua D, Wang M (2008) Genomic organization and mechanisms of inheritance in arbuscular mycorrhizal fungi: contrasting the evidence and implications of current theories. In: Varma A (ed) Mycorrhiza, 3rd edn. Springer, Berlin, pp 135–148

    Chapter  Google Scholar 

  • Campagnac E, Fontaine J, Lounès-Hadj Sahraoui A, Laruelle F, Durand R, Grandmougin-Ferjani A (2008) Differential effects of fenpropimorph and fenhexamid, two sterol biosynthesis inhibitor fungicides, on arbuscular mycorrhizal development and sterol metabolism in carrot roots. Phytochemistry 69:2912–2919

    Article  CAS  PubMed  Google Scholar 

  • Campagnac E, Fontaine J, Lounès-Hadj Sahraoui A, Laruelle F, Durand R, Grandmougin-Ferjani A (2009) Fenpropimorph slows down the sterol pathway and the development of the arbuscular mycorrhizal fungus Glomus intraradices. Mycorrhiza 19:365–374

    Article  CAS  PubMed  Google Scholar 

  • Cárdenas-Flores A, Draye X, Bivort C, Cranenbrouck S, Declerck S (2010) Impact of multispores in vitro subcultivation of Glomus sp. MUCL 43194 (DAOM 197198) on vegetative compatibility and genetic diversity detected by AFLP. Mycorrhiza 20:415–425

    Article  PubMed  Google Scholar 

  • Croll D, Giovannetti M, Koch AM, Sbrana C, Ehinger M, Lammers PJ, Sanders IR (2009) Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 181:924–937

    Article  CAS  PubMed  Google Scholar 

  • Declerck S, Strullu DG, Plenchette C (1998) Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90:579–585

    Article  Google Scholar 

  • Dodd JC, Jeffries P (1989) Effect of fungicides on three vesicular arbuscular mycorrhizal fungi associated with winter wheat (Triticum aestivum L.). Biol Fert Soils 7:120–128

    Article  CAS  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fillinger S, Leroux P, Auclair C, Barreau C, Al Hjj C, Debieu D (2008) Genetic analysis of fenhexamid-resistant field isolates of the phytopathogenic fungus Botrytis cinerea. Amtimicrob Agents Chemother 52:3933–3940

    Article  CAS  Google Scholar 

  • Giovannetti M, Azzolini D, Citernesi AS (1999) Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Appl Environ Microb 65:5571–5575

    CAS  Google Scholar 

  • Giovannetti M, Sbrana C, Strani P, Agnolucci M, Rinaudo V, Avio L (2003) Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. Appl Environ Microb 69:616–624

    Article  CAS  Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Strani P (2004) Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol 164:175–181

    Article  Google Scholar 

  • Glass NL, Rasmussen C, Roca MG, Read ND (2004) Hyphal homing, fusion, and mycelial interconnectedness. Trends Microbiol 12:135–141

    Article  CAS  PubMed  Google Scholar 

  • Golub T, Wacha S, Caroni P (2004) Spatial and temporal control of signaling through lipid rafts. Curr Opin Neurobiol 14:542–550

    Article  CAS  PubMed  Google Scholar 

  • Jin H, McCaffery JM, Grote E (2008) Ergosterol promotes pheromone signaling and plasma membrane fusion in mating yeast. J Cell Biol 180:813–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kjoller R, Rosendahl S (2000) Effects of fungicides on arbuscular mycorrhizal fungi: differential responses in alkaline phosphatase activity of external and internal hyphae. Biol Fert Soils 31:361–365

    Article  CAS  Google Scholar 

  • Koch AM, Kuhn G, Fontanillas P, Fumagalli L, Goudet I, Sanders IR (2004) High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi. Proc Nat Acad Sci USA 101:2369–2374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn G, Hijri M, Sanders IR (2001) Evidence for the evolution of multiple genomes in arbuscular mycorrhizal fungi. Nature 414:745–748

    Article  CAS  PubMed  Google Scholar 

  • Leroux P, Fritz R, Debieu D, Albertini C, Lanen C et al (2002) Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Manag Sci 58:876–888

    Article  CAS  PubMed  Google Scholar 

  • Leslie JF, Zeller KA (1996) Heterokaryon incompatibility in fungi: more than just another way to die. J Genet 75:415–424

    Article  Google Scholar 

  • Moyer-Henry KA, Burton JW, Israel DW, Rufty TW (2006) Nitrogen transfer between plants: a 15n natural abundance study with crop and weed species. Plant Soil 282:7–20

    Article  CAS  Google Scholar 

  • Mukerji KG, Ciancio A (2007) Mycorrhizae in the integrated pest and disease management. In: Ciancio A, Mukerji KG (eds) General concepts in integrated pest and disease management. Springer, Heidelberg, pp 245–266

    Chapter  Google Scholar 

  • Mukherjee S, Maxfield FR (2004) Membrane domains. Annu Rev Cell Dev Biol 20:839–866

    Article  CAS  Google Scholar 

  • Newman EI (1988) Mycorrhizal links between plants: their functioning and ecological significance. Adv Ecol Res 18:243–270

    Article  Google Scholar 

  • Plenchette C, Clermont-Dauphin C, Meynard JM, Fortin JA (2005) Managing arbuscular mycorrhizal fungi in cropping systems. Can J Plant Sci 85:31–40

    Article  Google Scholar 

  • Roca MG, Read ND, Wheals AE (2005) Conidial anastomosis tubes in filamentous fungi. FEMS Microbiol Lett 249:191–198

    Article  CAS  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress: new perspectives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  CAS  PubMed  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, New York, p 787

    Google Scholar 

  • Sukarno N, Smith SE, Scott ES (1993) The effect of fungicides on vesicular-arbuscular mycorrhizal symbiosis. I. The effects on vesicular-arbuscular mycorrhizal fungi and plant growth. New Phytol 25:139–147

    Article  Google Scholar 

  • Voets L, de la Providencia IE, Declerck S (2006) Glomeraceae and Gigasporaceae differ in their ability to form hyphal networks. New Phytol 172:185–188

    Article  PubMed  Google Scholar 

  • Yao Q, Li X, Ai W, Christie P (2003) Bi-directional transfer of phosphorus between red clover and perennial ryegrass via arbuscular mycorrhizal hyphal links. Eur J Soil Biol 39:47–54

    Article  CAS  Google Scholar 

  • Zocco D, Fontaine J, Lozanova E, Renard L, Bivort C, Durand R, Grandmougin-Ferjani A, Declerck S (2008) Effects of two sterol biosynthesis inhibitor fungicides (fenpropimorph and fenhexamid) on the development of an arbuscular mycorrhizal fungus. Mycol Res 112:592–601

    Article  CAS  PubMed  Google Scholar 

  • Zocco D, Van Aarle I, Oger E, Lanfranco L, Declerck (2011) Fenpropimorph and fenhexamid impact phosphorus translocation by arbuscular mycorrhizal fungi. Mycorrhiza doi 10-1007/s00572-010-0344-0

Download references

Acknowledgements

This work was supported by the CONACyT (Mexico) grant no. 217083 and by the Bourse de Cooperation au Développement (UCL/ADRI, Belgium) UCL register no. 8108-05-00. We are grateful to Bayer Crop Science for kindly providing the fenhexamid. S.C. gratefully acknowledges the financial contribution of the Belgian Federal Science Policy Office (contract BCCM C4/00/001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Declerck.

Additional information

Mycothèque de l’Université catholique de Louvain (MUCL) is part of the Belgian Coordinated Collections of Micro-organisms (BCCM).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(DOCX 14 kb)

Fig. S1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardenas-Flores, A., Cranenbrouck, S., Draye, X. et al. The sterol biosynthesis inhibitor molecule fenhexamid impacts the vegetative compatibility of Glomus clarum . Mycorrhiza 21, 443–449 (2011). https://doi.org/10.1007/s00572-011-0385-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-011-0385-z

Keywords

Navigation