Skip to main content
Log in

RETRACTED ARTICLE: Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.)

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

This article was retracted on 16 September 2011

Abstract

The effect of arbuscular mycorrhizal (AM) fungi inoculation on pepper (Capsicum annuum L. cv. Zhongjiao 105) plant growth and on some physiological parameters in response to increasing soil Cu concentrations was studied. Treatments consisted of inoculation or not with Glomus mosseae and the addition of Cu to soil at the concentrations of 0 (control), 2 (low), 4 (medium), and 8 (high) mM CuSO4. AM fungal inoculation decreased Cu concentrations in plant organs and promoted biomass yields as well as the contents of chlorophyll, soluble sugar, total protein, and the concentrations of P, K, Ca, and Mg. Plants grown in high Cu concentration exhibited a Cu-induced proline accumulation and also an increase in total free amino acid contents; however, both were lower in mycorrhizal pepper. Cu-induced oxidative stress by increasing lipid peroxidation rates and the activity of superoxide dismutase, catalase, ascorbate peroxidase and glutathione reductase, and AM symbiosis enhanced these antioxidant enzyme activities and decreased oxidative damage to lipids. In conclusion G. mosseae was able to maintain an efficient symbiosis with pepper plants in contaminated Cu soils, improving plant growth under these conditions, which is likely to be due to reduced Cu accumulation in plant tissues, reduced oxidative stress and damage to lipids, or enhanced antioxidant capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed H, Hasanain A, Akhtar S, Hussain A, Abaid-ullah YG, Wahid A, Mahmood S (2010) Antioxidant enzymes as bio-markers for copper tolerance in safflower (Carthamus tinctorius L.). Afri J Biotech 9:5441–5444

    CAS  Google Scholar 

  • Allen SE (1989) Chemical analysis of ecological materials, 2nd edn. Blackwell, Oxford

  • Andrade SAL, Silveira APD, Jorge RA, de Abreu MF (2008) Cadmium accumulation in sunflower plants influenced by Arbuscular mycorrhiza. Int J Phytoremediat 10:1–13

    Article  Google Scholar 

  • Asada K (1992) Ascorbate peroxidase—a hydrogen peroxide scavenging enzyme in plants. Physiol Plant 85:235–241

    Article  CAS  Google Scholar 

  • Asada K (1999) The water–water cycle in chloroplasts: scavenging of active oxygen dissipation of excess photons. Annu Rev Plant Phys 50:601–639

    Article  CAS  Google Scholar 

  • Badour SSA (1959) Analytisch–chemische Untersuchung des Kaliummangels bei Chlorella im Vergleich mit anderen Mangelzuständen. Ph.D. Dissertation Göttingen.

  • Barea JM (1991) Vesicular-arbuscular mycorrhizae as modifiers of soil fertility. In: Stewart BA (ed) Advances in soil science, vol 7. Springer, New York, pp 1–40

    Chapter  Google Scholar 

  • Barker SJ, Tagu D, Delp G (1998) Regulation of root and fungal morphogenesis in mycorrhizal symbiosis. Plant Physiol 116:1201–1207

    Article  CAS  Google Scholar 

  • Bates LS, Wladren PR, Tear DT (1973) Rapid determination of free proline for water–stress studies. Plant Soil 39:205–207

    Article  CAS  Google Scholar 

  • Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43:83–116

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I, Strbac D, Marschner H (1993) Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. J Exp Bot 44:127–132

    Article  CAS  Google Scholar 

  • Chance B, Meahly CA (1955) Assay of catalases and peroxidase. Meth Enzymol 2:764–775

    Article  Google Scholar 

  • Fariduddin Q, Yusuf M, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environ Exp Bot 66:418–424

    Article  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S (1995) Proteins and proteins activities in endomycorrhizal symbioses. In: Hock B, Varma A (eds) Mycorrhiza. Springer, Berlin, pp 251–266

    Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular–arbuscular infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1123

    Article  PubMed  Google Scholar 

  • Gomes-Junior RA, Moldes CA, Delite FS, Gratão PL, Mazzafera P, Lea PJ, Azevedo RA (2006) Nickel elicits a fast antioxidant response in Coffea arabica cells. Plant Physiol Biochem 44:420–429

    Article  PubMed  CAS  Google Scholar 

  • González-Guerrero M, Benabdellah K, Ferrol N et al (2009) Mechanisms underlying heavy metal tolerance in arbuscular mycorrhizas. In: Azcon-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas: functional processes and ecological impact. Springer, Berlin, pp 107–122

    Google Scholar 

  • Gratão PL, Monteiro CC, Antunes AM, Peres LEP, Azevedo RA (2008) Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress. Ann Appl Biol 153:321–333

    Article  Google Scholar 

  • Groppa M, Benavides M (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonisation by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–717

    CAS  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochem 68:139–146

    Article  CAS  Google Scholar 

  • Joner EJ, Leyval C (1997) Uptake of Cd-109 by roots and hyphae of a Glomus mosseae Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol 135:353–360

    Article  CAS  Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    Article  CAS  Google Scholar 

  • Kormanik PP, Bryan WC, Schultz RC (1980) Procedure and equipment for staining large number of plant roots for endomycorrhizal assay. Can J Microbiol 26:536–538

    Article  PubMed  CAS  Google Scholar 

  • Lea P, Azevedo RA (2007) Nitrogen use efficiency. 2. Amino acid metabolism. Ann Appl Biol 151:269–275

    Article  CAS  Google Scholar 

  • Lee YP, Takanashi T (1966) An improved colorimetric determination of amino acids with the use of ninhydrin. Anal Biochem 14:71–77

    Article  CAS  Google Scholar 

  • Leyval C, Joner EJ, del Val C (2002) Potential of arbuscular mycorrhizal fungi for bioremediation. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K et al (eds) Mycorrhizal technology in agriculture. Birkhaüser, Basel, pp 175–186

    Chapter  Google Scholar 

  • Liu J, Xiong ZT, Li TY, Huang H (2004) Bioaccumulation and ecophysiological responses to copper stress in two populations of Rumex dentatus L. from copper contaminated and non-contaminated sites. Environ Exp Bot 52:43–51

    Article  CAS  Google Scholar 

  • Lombardi L, Sebastiani L (2005) Copper toxicity in Prunus cerasifera: growth and antioxidant enzymes responses of in vitro grown plants. Plant Sci 168:797–802

    Article  CAS  Google Scholar 

  • Marques APGC, Oliveira RS, Samardjieva AK, Pisarra J, Rangel AOSS, Castro PML (2007) Solanum nigrum grown in soil contaminated soil: effect of arbuscular mycorrhizal fungi on zinc accumulation and histolocalisation. Environ Pollut 145:691–699

    Article  PubMed  CAS  Google Scholar 

  • Marquez-Garcia B, Cordoba F (2010) Antioxidative system in wild of Erica andevalensis. Environ Exp Bot 68:58–65

    Article  CAS  Google Scholar 

  • Mirlean N, Roisenberg A, Chies JO (2007) Metal contamination of vineyard soils in wet subtropics (southern Brazil). Environ Pollut 149:10–17

    Article  PubMed  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Ouziad F, Hidebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649

    Article  PubMed  CAS  Google Scholar 

  • Pilon M, Abdel-Ghany SE, Cohu CM, Gogolin KA Ye H (2006) Copper cofactor delivery in plant cells. Curr Opin Plant Biol 9:256–263

    Article  PubMed  CAS  Google Scholar 

  • Ryan MH, Angus FJ (2003) Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn-uptake but no increase in P uptake or yield. Plant Soil 250:225–239

    Article  CAS  Google Scholar 

  • Sannazzaro AI, Echeverrìa M, Albertó EO, Ruiz OA, Menéndez AB (2007) Modulation of polyamine balance in Lotus glaber by salinity and arbuscular mycorrhizal. Plant Physiol Biochem 45:39–46

    Article  PubMed  CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal induced oxidative stress and protection by mycorrhization. J Exp Bot 372:1351–1365

    Article  Google Scholar 

  • Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711–726

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, New York

    Google Scholar 

  • Smith IK, Vierheller TL, Thorne C (1989) Properties and functions of glutathione reductase in plants. Physiol Plant 77:449–456

    Article  CAS  Google Scholar 

  • Stewart RC, Bewley JD (1980) Lipid peroxidation associated with accelerated ageing of soybean axes. Plant Physiol 65:245–248

    Article  PubMed  CAS  Google Scholar 

  • Toler HD, Morton JB, Cumming JR (2005) Growth and metal accumulation of mycorrhizal shorgum exposed to elevated copper and zinc. Water Air Soil Pollut 164:155–172

    Article  CAS  Google Scholar 

  • Vogel-Mikus K, Drobne D, Regvar M (2005) Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonization of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut 133:233–242

    Article  PubMed  CAS  Google Scholar 

  • Wyss W, Mellor RB, Wiemken A (1990) Vesicular arbuscular mycorrhizas of wild-type soybean and non nodulating mutants with Glomus mosseae contain symbiosis-specific polypeptides (mycorrhizins) immunologically cross-reactive with nodulins. Planta 182:22–26

    Article  CAS  Google Scholar 

  • Yruela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156

    Article  CAS  Google Scholar 

  • Zhang ZL, Qu W (2004) Experimental guidance of plant physiology. High Education, Beijing

    Google Scholar 

  • Zhang ZA, Zhang MS (2006) Experimental guide for plant physiology. High education, Beijing

    Google Scholar 

Download references

Acknowledgment

The author thanks The Egyptian Ministry of Higher Education and Scientific Research for a postdoctoral fellowship (ParOwn 1207) and Prof. He Chaoxing (Institute of Vegetables and Flowers, Chinese Academy of Agricultural Science, Beijing, China) for technical support. The helpful comments of the editor and two anonymous reviewers a gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arafat Abdel Hamed Abdel Latef.

Additional information

This article has been retracted due to plagiarism.

About this article

Cite this article

Abdel Latef, A.A.H. RETRACTED ARTICLE: Influence of arbuscular mycorrhizal fungi and copper on growth, accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.). Mycorrhiza 21, 495–503 (2011). https://doi.org/10.1007/s00572-010-0360-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-010-0360-0

Keywords

Navigation