Skip to main content
Log in

In situ analysis of anastomosis in representative genera of arbuscular mycorrhizal fungi

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Arbuscular mycorrhizal fungi (AMF) form obligate symbiotic associations with plants. As a result, the role of hyphal interactions in the establishment and maintenance of common mycorrhizal networks is poorly understood because of constraints on methods for in situ analysis. We designed a rhizohyphatron that allows the examination of intact mycelia growing from whole mycorrhizal plants. Plants preinoculated with spores were cultivated in a compartment with a connecting tube from which hyphae extend through a fine nylon mesh onto agar-coated slides. Species selected from each of the five AMF genera were used to assess and characterize the anastomosis behavior in the rhizohyphatron. Hyphal networks of Paraglomus occultum, Ambispora leptoticha, Scutellospora heterogama, and Gigaspora gigantea growing on the agar-coated slides showed no evidence of hyphal fusion. In contrast, anastomosis occurred in the hyphal networks of Glomus clarum and Glomus intraradices at an average frequency of less than 15% for both species. The rhizohyphatron developed in this study will provide knowledge of the biology and genetics of self/non-self recognition in AMF and help to better understand Glomeromycotan life history strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ainsworth AM, Rayner ADM (1986) Responses of living hyphae associated with self and non-self fusions in the basidiomycete Phanerochaete velutina. J Gen Microbiol 132:191–201

    Google Scholar 

  • Ainsworth AM, Rayner ADM (1989) Hyphal and mycelial responses associated with genetic exchange within and between species of the basidiomycete genus Stereum. J Gen Microbiol 135:1643–1659

    Google Scholar 

  • Andrews JH (1992) Fungal life-history strategies. In: Carroll GW, Wicklow DT (eds) The fungal community, its organization and role in the ecosystem. Dekker, New York, pp 119–145

    Google Scholar 

  • Aylmore RC, Todd NK (1986) Cytology of self fusions in hyphae of Phanerochaete velutina. J Gen Microbiol 132:571–579

    Google Scholar 

  • Bago B, Zipfel W, Williams RM, Piché Y (1999) Nuclei of symbiotic arbuscular mycorrhizal fungi as revealed by in vivo two-photon microscopy. Protoplasma 209:77–89

    Article  PubMed  CAS  Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular–arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Article  Google Scholar 

  • Bever JD, Wang M (2005) Arbuscular mycorrhizal fungi–hyphal fusion and multigenomic structure. Nature 433:E3–E4

    Article  PubMed  CAS  Google Scholar 

  • Biella S, Smith ML, Aist JR, Cortesi P, Milgroom MG (2002) Programmed cell death correlates with virus transmission in a filamentous fungus. P R Soc London 269:2269–2276

    Article  Google Scholar 

  • Correll JC, Klittich CJR, Leslie JF (1989) Heterokaryon self-incompatibility in Gibberella fujikuroi (Fusarium moniliforme). Mycol Res 93:21–27

    Article  Google Scholar 

  • Croll D, Giovannetti M, Koch AM, Sbrana C, Ehinger M, Lammers PJ, Sanders IR (2009) Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 181:924–937

    Article  PubMed  CAS  Google Scholar 

  • de la Providencia IE, de Souza FA, Fernandez F, Delmas NS, Declerck S (2005) Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups. New Phytol 165:261–271

    Article  PubMed  Google Scholar 

  • Declerck S, Séguin S, Dalpé Y (2005) The monoxenic culture of arbuscular mycorrhizal fungi as a tool for germplasm collections. In: Declerck S, Strullu DG, Fortin A (eds) In vitro culture of mycorrhizas. Springer, Berlin, pp 17–30

    Chapter  Google Scholar 

  • Giovannetti M, Sbrana C, Logi C (1994) Early processes involved in host recognition by arbuscular mycorrhizal fungi. New Phytol 127:703–709

    Article  Google Scholar 

  • Giovannetti M, Sbrana C, Citernesi AS, Avio L (1996) Analysis of factors involved in fungal recognition responses to host derived signals by arbuscular mycorrhizal fungi. New Phytol 133:65–71

    Article  Google Scholar 

  • Giovannetti M, Azzolini D, Citernesi AS (1999) Anastomosis formation and nuclear and protoplasmic exchange in arbuscular mycorrhizal fungi. Appl Environ Microbiol 65:5571–5575

    PubMed  CAS  Google Scholar 

  • Giovannetti M, Fortuna P, Citernesi AS, Morini S, Nuti MP (2001) The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytol 151:717–724

    Article  Google Scholar 

  • Giovannetti M, Sbrana C, Strani P, Agnolucci M, Rinaudo V, Avio L (2003) Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. Appl Environ Microbiol 69:616–624

    Article  PubMed  CAS  Google Scholar 

  • Giovannetti M, Sbrana C, Avio L, Strani P (2004) Patterns of below-ground plant interconnections established by means of arbuscular mycorrhizal networks. New Phytol 164:175–181

    Article  Google Scholar 

  • Glass NL, Dementhon K (2006) Non-self recognition and programmed cell death in filamentous fungi. Curr Opin Microbiol 9:553–558

    Article  PubMed  CAS  Google Scholar 

  • Glass NL, Kaneko I (2003) Fatal attraction: nonself recognition and heterokaryon incompatibility in filamentous fungi. Eukaryot Cell 2:1–8

    Article  PubMed  CAS  Google Scholar 

  • Glass NL, Jacobson DJ, Shiu PKT (2000) The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annu Rev Genet 34:165–186

    Article  PubMed  CAS  Google Scholar 

  • Gregory PH (1984) The fungal mycelium: an historical-perspective. T Brit Mycol Soc 82:1–11

    Article  Google Scholar 

  • Hickey PC, Jacobson DJ, Read ND, Glass NL (2002) Live-cell imaging of vegetative hyphal fusion in Neurospora crassa. Fungal Genet Biol 37:109–119

    Article  PubMed  Google Scholar 

  • Hyakumachi M, Ui T (1987) Non-self-anastomosing isolates of Rhizoctonia solani obtained from fields of sugar-beet monoculture. T Brit Mycol Soc 89:155–159

    Article  Google Scholar 

  • Jany JL, Pawlowska TE (2010) Multinucleate spores contribute to evolutionary longevity of asexual Glomeromycota. Am Nat 175:424–435

    Article  PubMed  Google Scholar 

  • Kawamoto H, Aizawa K (1989) Morphology of hyphal anastomosis in entomopathogenic fungi, Beauveria bassiana and Beauveria brongniartii. Appl Entomol Zool 24:490–491

    Google Scholar 

  • Kues U (2000) Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol Mol Biol Rev 64:316–353

    Article  PubMed  CAS  Google Scholar 

  • Leslie JF (1993) Fungal vegetative compatibility. Annu Rev Phytopathol 31:127–150

    Article  PubMed  CAS  Google Scholar 

  • Liu YC, Milgroom MG (1996) Correlation between hypovirus transmission and the number of vegetative incompatibility (vic) genes different among isolates from a natural population of Cryphonectria parasitica. Phytopathology 86:79–86

    Article  Google Scholar 

  • Marek SM, Wu J, Glass NL, Gilchrist DG, Bostock RM (2003) Nuclear DNA degradation during heterokaryon incompatibility in Neurospora crassa. Fungal Genet Biol 40:126–137

    Article  PubMed  CAS  Google Scholar 

  • McCabe PM, Gallagher MP, Deacon JW (1999) Microscopic observation of perfect hyphal fusion in Rhizoctonia solani. Mycol Res 103:487–490

    Article  Google Scholar 

  • Mikkelsen BL, Rosendahl S, Jakobsen I (2008) Underground resource allocation between individual networks of mycorrhizal fungi. New Phytol 180:890–898

    Article  PubMed  Google Scholar 

  • Morton J (1993) Germ plasm in the International Collection of Arbuscular and Vesicular–Arbuscular Mycorrhizal Fungi (INVAM) and procedures for culture development, documentation and storage. Mycotaxon 48:491–528

    Google Scholar 

  • Pawlowska TE, Taylor JW (2004) Organization of genetic variation in individuals of arbuscular mycorrhizal fungi. Nature 427:733–737

    Article  PubMed  CAS  Google Scholar 

  • Pontecorvo G (1956) The parasexual cycle in fungi. Annu Rev Microbiol 10:393–400

    Article  PubMed  CAS  Google Scholar 

  • Punja ZK, Grogan RG (1983) Hyphal interactions and antagonism among field isolates and single-basidiospore strains of Athelia (Sclerotium) rolfsii. Phytopathology 73:1279–1284

    Article  Google Scholar 

  • Redecker D, Raab P (2006) Phylogeny of the Glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers. Mycologia 98:885–895

    Article  PubMed  Google Scholar 

  • Saupe SJ, Clavé C, Bégueret J (2000) Vegetative incompatibility in filamentous fungi: Podospora and Neurospora provide some clues. Curr Opin Microbiol 3:608–612

    Article  PubMed  CAS  Google Scholar 

  • Sbrana C, Nuti MP, Giovannetti M (2007) Self-anastomosing ability and vegetative incompatibility of Tuber borchii isolates. Mycorrhiza 17:667–675

    Article  PubMed  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Smith ML, Micali OC, Hubbard SP, Mir-Rashed N, Jacobson DJ, Glass NL (2000) Vegetative incompatibility in the het-6 region of Neurospora crassa is mediated by two linked genes. Genetics 155:1095–1104

    PubMed  CAS  Google Scholar 

  • Voets L, de la Providencia IE, Declerck S (2006) Glomeraceae and Gigasporaceae differ in their ability to form hyphal networks. New Phytol 172:185–188

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Bill Wheeler and Robert Bills for the help in building and maintaining the rhizohyphatrons. We would like to thank Dr. J. Yao for the use of the inverted microscope in his laboratory. We are especially indebted to Dr. Teresa Pawlowska for insightful guidance and mentorship. Funding was provided by a Fulbright/CAPES Ph.D. scholarship to Sonia Purin and NSF grant DEB-0649341 to Joseph Morton.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Purin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purin, S., Morton, J.B. In situ analysis of anastomosis in representative genera of arbuscular mycorrhizal fungi. Mycorrhiza 21, 505–514 (2011). https://doi.org/10.1007/s00572-010-0356-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-010-0356-9

Keywords

Navigation