Skip to main content

Weak habitat specificity in ectomycorrhizal communities associated with Salix herbacea and Salix polaris in alpine tundra

Abstract

This study explores mid-alpine ectomycorrhizal communities on Salix herbacea and Salix polaris in plant communities differing in nutrient status and snow conditions. Plant species were identified by tracking roots back to above ground structures while fungal species were identified using molecular methods. The fungi were identified to 34 molecular operational taxonomic units (MOTUs)/species but species accumulation curves indicated that the communities were only partially sampled. The estimated total species richness was 49 (±9 SD) MOTUs/species. No significant ectomycorrhizal community specificity was found between the two plant species and only weak specificity between different plant communities. Furthermore, no difference in proportion of colonized root tips could be demonstrated between plant communities. However, some fungal taxa showed tendencies to associate with specific environmental conditions. Sebacinaceae, Inocybe egenula, Russula cf. emetica, and a Tomentella sp. were found in meadow communities but not in the heath communities. Sistotrema cf. alboluteum and Tomentella cf. terrestris were only found in the dry and mesic heath communities. Classifications into exploration types showed that the contact type is more abundant in the dry heath community than the other communities. Cenococcum geophilum was the most common species but Cortinarius spp., Russula spp., Tomentella spp., and Lactarius spp. were also common. This study confirms that alpine communities are rich in ectomycorrhizal fungi including species from a wide variety of fungal lineages and also show that many dominant species have wide ecological amplitude.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Aerts R, Chapin FS (2000) The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Adv Ecol Res 30:1–67

    Article  CAS  Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae—a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Agerer R, Schloter M, Hahn C (2000) Fungal enzymatic activity in fruitbodies. Nova Hedwig 71:315–336

    Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    PubMed  Article  CAS  Google Scholar 

  • Baier R, Ingenhaag J, Blaschke H, Göttlein A, Agerer R (2006) Vertical distribution of an ectomycorrhizal community in upper soil horizons of a young Norway spruce (Picea abies [L.] Karst.) stand of the Bavarian limestone Alps. Mycorrhiza 16:197–206

    PubMed  Article  Google Scholar 

  • Bending GD, Read DJ (1997) Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi. Mycol Res 101:1348–1354

    Article  CAS  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2010) GenBank. Nucleic Acids Res 38:D46–D51

    PubMed  Article  CAS  Google Scholar 

  • Björk RG, Klemedtson L, Molau U, Harndorf J, Ödman A, Giesler R (2007a) Linkages between N turnover and plant community structure in tundra landscape. Plant Soil 294:247–261

    Article  Google Scholar 

  • Björk RG, Majdi H, Klemedtson L, Lewis-Johnsson L, Molau U (2007b) Long-term warming effects on root morphology, root mass distribution, and microbial activity in two dry tundra plant communities in northern Sweden. New Phytol 176:862–873

    PubMed  Article  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:326–349

    Article  Google Scholar 

  • Clemmensen KE, Michelsen A (2006) Integrated long-term responses of an arctic-alpine willow and associated ectomycorrhizal fungi to altered environment. Can J Bot 84:831–843

    Article  Google Scholar 

  • Clemmensen KE, Sorensen PL, Michelsen A, Jonasson S, Ström L (2008) Site-dependent N uptake from N-form mixtures by arctic plants, soil microbes and ectomycorrhizal fungi. Oecologia 155:771–783

    PubMed  Article  Google Scholar 

  • Colwell RK (2009) EstimateS: Statistical estimation of species richness and shared species from samples. Version 8.2. User’s Guide and application published at: http://purl.oclc.org/estimates

  • Cripps CL, Eddington LH (2005) Distribution of mycorrhizal types among alpine vascular plant families on the beartooth plateau, Rocky Mountains, U.S.A., in reference to large-scale patterns in arctic–alpine habitats. Arct Antarct Alp Res 37:177–188

    Article  Google Scholar 

  • Dahlberg A, Jonsson L, Nylund JE (1997) Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Can J Bot 75:1323–1335

    Article  Google Scholar 

  • Dhillion SS (1994) Ectomycorizae, arbuscular mycorrhizae, and Rhizoctonia sp. of Alpine and Boreal Salix spp. in Norway. Arct Alp Res 26:304–307

    Article  Google Scholar 

  • Douhan GW, Rizzo DM (2005) Phylogenetic divergence in a local population of the ectomycorrhizal fungus Cenococcum geophilum. New Phytol 166:263–271

    PubMed  Article  CAS  Google Scholar 

  • Fujimura KE, Egger KN, Henry GHR (2008) The effect of experimental warming on the root associated fungal community of Salix arctica. ISME J 2:105–114

    PubMed  Article  CAS  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for Basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    PubMed  Article  CAS  Google Scholar 

  • Gardes M, Dahlberg A (1996) Mycorrhizal diversity in Arctic and alpine tundra: an open question. New Phytol 133:147–157

    Article  Google Scholar 

  • Garnica S, Weiss M, Oertel B, Oberwinkler F (2005) A framework for a phylogenetic classification in the genus Cortinarius (Basidiomycota, Agaricales) derived from morphological and molecular data. Can J Bot 83:1457–1477

    Article  CAS  Google Scholar 

  • Giesler R, Högberg M, Högberg P (1998) Soil chemistry and plants in Fennoscandian boreal forest as exemplified by a local gradient. Ecol 79:119–137

    Article  Google Scholar 

  • Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224

    PubMed  Article  CAS  Google Scholar 

  • Hall T (1999) BioEdit—Biological Sequence Alignment Editor for Windows. North Carolina State University, Raleigh

    Google Scholar 

  • Hopple JS Jr, Vilgalys R (1999) Phylogenetic relationships in the mushroom genus Coprinus and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: divergent domains, outgroups, and monophyly. Mol Phylogenet Evol 13:1–19

    PubMed  Article  CAS  Google Scholar 

  • Hrynkiewicz K, Baum C, Leinweber P (2009) Mycorrhizal community structure, microbial biomass P and phosphatase activities under Salix polaris as influenced by nutrient availability. Eur J Soil Biol 45:168–175

    Article  CAS  Google Scholar 

  • Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer-broadleaf forests. New Phytol 174:430–440

    PubMed  Article  CAS  Google Scholar 

  • Kernaghan G, Harper KA (2001) Community structure of ectomycorrhizal fungi across an alpine/subalpine ecotone. Ecography 24:81–188

    Article  Google Scholar 

  • Knudsen H, Vesterholt J (eds) (2008) Funga Nordica: Agaricoid, boletoid and cyhelloid genera. Nordsvamp, Kopenhagen

    Google Scholar 

  • Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AF, Tedersoo L, Vrålstad T, Ursing BM (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068

    PubMed  Article  Google Scholar 

  • Kranabetter JM, Durall DM, MacKenzie WH (2009) Diversity and species distribution of ectomycorrhizal fungi along productivity gradients of a southern boreal forest. Mycorrhiza 19:99–111

    PubMed  Article  CAS  Google Scholar 

  • Larsson E, Jacobsson S (2004) The controversy over Hygrophorus cossus settled using ITS sequence data from 200-year-old type material. Mycol Res 108:781–786

    PubMed  Article  CAS  Google Scholar 

  • Lindblad KEM, Nyberg R, Molau U (2006) Generalization of heterogeneous alpine vegetation in air photo-based image classification, Latnjajaure catchment, northern Sweden. Pirineos 161:3–24

    Article  Google Scholar 

  • Matheny PB (2005) Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (Inocybe; Agaricales). Mol Phylogenet Evol 35:1–20

    PubMed  Article  CAS  Google Scholar 

  • Michelsen A, Schmidt IK, Jonasson S, Quarmby C, Sleep D (1996) Leaf 15 N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non- and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia 105:53–63

    Article  Google Scholar 

  • Molau U, Kling K, Lindblad R, Björk R, Dänhardt AL (2003) A GIS assessment of alpine biodiversity at range of scales. In: Nagy L, Grabherr G, Körner C, Thompson DBA (eds) Alpine biodiversity in Europe, Ecol Stud 167:221–229

  • Mühlmann O, Peintner U (2008) Mycobionts of Salix herbacea on a glacier forefront in the Austrian Alps. Mycorrhiza 18:171–180

    PubMed  Article  Google Scholar 

  • Nilsson RH, Larsson K-H, Larsson E, Kõljalg U (2006) Fruiting body—guided molecular identification of root-tip mantle mycelia provides strong indications of ectomycorrhizal associations in two species of Sistotrema (Basidiomycota). Mycol Res 110:1426–1432

    PubMed  Article  CAS  Google Scholar 

  • Økland RH, Økland T, Rydgren K (2001) Vegetation-environment relationships of boreal spruce swamp forest in Østmarka Nature Reserve, SE Norway. Sommerfeltia 29:1–190

    Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O'Hara B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2009) vegan: Community Ecology Package. R package version 1.15-4

  • Osmundson TW, Cripps CL, Mueller GM (2005) Morphological and molecular systematics of Rocky Mountain alpine Laccaria. Mycologia 97:949–972

    PubMed  Article  CAS  Google Scholar 

  • Payton ME, Miller AE, Raun WR (2000) Testing statistical hypotheses using standard error bars and confidence intervals. Commun Soil Sci Plant Anal 31:547–551

    Article  CAS  Google Scholar 

  • Payton ME, Greenstone MH, Schenker N (2003) Overlapping confidence intervals or standard error intervals: what do they mean in terms of statistical significance? J Insect Sci 3:34

    PubMed  Google Scholar 

  • R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    Article  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? New Phytol 157:475–492

    Article  Google Scholar 

  • Rinaldi AC, Comandini O, Kuyper TW (2008) Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33:1–45

    Google Scholar 

  • Ryberg M, Nilsson RH, Kristiansson E, Töpel M, Jacobsson S, Larsson E (2008) Mining metadata from unidentified ITS sequences in GenBank: a case study in Inocybe (Basidiomycota). BMC Evol Biol 8:50

    PubMed  Article  Google Scholar 

  • Ryberg M, Larsson E, Molau U (2009) Ectomycorrhizal diversity on Dryas octopetala and Salix reticulata in an alpine cliff ecosystem. Arct Antarct Alp Res 41:506–514

    Article  Google Scholar 

  • Scattolin L, Montecchio L, Mosca E, Agerer R (2008) Vertical distribution of the ectomycorrhizal community in the top soil of Norway spruce stands. Eur J Forest Res 127:347–357

    Article  Google Scholar 

  • Shimono Y, Kato M, Takamatsu S (2004) Molecular phylogeny of Russulaceae (Basidiomycetes; Russulales) inferred from the nucleotide sequences of nuclear large subunit rDNA. Mycoscience 45:303–316

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinform 22:2688–2690

    Article  CAS  Google Scholar 

  • Swofford DL, Olsen GJ, Waddell PJ, Hillis DM (1996) Phylogenetic inference. In: Hillis DM, Moritz C, Mable BK (eds) Molecular Systematics, 2nd edn. Sinauer Associates Inc, Sunderland, pp 407–514

    Google Scholar 

  • Tedersoo L, Jairus T, Horton BM, Abarenkov K, Suvi T, Saar I, Kõljalg U (2008) Strong host preference of ectomycorrhizal fungi in a Tasmanian wet sclerophyll forest as revealed by DNA barcoding and taxon-specific primers. New Phytol 180:479–490

    PubMed  Article  CAS  Google Scholar 

  • Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20:217–263

    PubMed  Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    PubMed  Article  CAS  Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11:1111–1120

    PubMed  Article  Google Scholar 

  • Urcelay C, Bret-Harte MS, Díaz S, Chapin FS (2003) Mycorrhizal colonization mediated by species interactions in arctic tundra. Oecologia 137:399–404

    PubMed  Article  Google Scholar 

  • Wallenda T, Kottke I (1998) Nitrogen deposition and ectomycorrhizas. New Phytol 139:169–187

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Inns MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR Protocols: a Guide to Methods and Applications. Academic, New York, pp 315–322

    Google Scholar 

Download references

Acknowledgments

We are grateful to Josephine Rodriguez and two reviewers for comments and suggestions on earlier drafts of this paper. Financial support was received from Helge Ax:son-Johnsons foundation and Kapten Carl Stenholms donationsfond.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ryberg.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

Table of MOTUs/species and in which plant communities they were collected (DOC 135 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ryberg, M., Andreasen, M. & Björk, R.G. Weak habitat specificity in ectomycorrhizal communities associated with Salix herbacea and Salix polaris in alpine tundra. Mycorrhiza 21, 289–296 (2011). https://doi.org/10.1007/s00572-010-0335-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-010-0335-1

Keywords

  • Alpine
  • Arctic
  • Ectomycorrhiza
  • Environmental gradient
  • Exploration types
  • Salix