Skip to main content

Agroecology: the key role of arbuscular mycorrhizas in ecosystem services

Abstract

The beneficial effects of arbuscular mycorrhizal (AM) fungi on plant performance and soil health are essential for the sustainable management of agricultural ecosystems. Nevertheless, since the ‘first green revolution’, less attention has been given to beneficial soil microorganisms in general and to AM fungi in particular. Human society benefits from a multitude of resources and processes from natural and managed ecosystems, to which AM make a crucial contribution. These resources and processes, which are called ecosystem services, include products like food and processes like nutrient transfer. Many people have been under the illusion that these ecosystem services are free, invulnerable and infinitely available; taken for granted as public benefits, they lack a formal market and are traditionally absent from society’s balance sheet. In 1997, a team of researchers from the USA, Argentina and the Netherlands put an average price tag of US $33 trillion a year on these fundamental ecosystem services. The present review highlights the key role that the AM symbiosis can play as an ecosystem service provider to guarantee plant productivity and quality in emerging systems of sustainable agriculture. The appropriate management of ecosystem services rendered by AM will impact on natural resource conservation and utilisation with an obvious net gain for human society.

This is a preview of subscription content, access via your institution.

References

  • Akkopru A, Demir S (2005) Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J Phytopathol 153:544–550

    Article  Google Scholar 

  • Altieri MA (1995) Agroecology: the science of sustainable agriculture. Westview Press, Boulder

    Google Scholar 

  • Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31

    Article  Google Scholar 

  • An ZQ, Hendrix JW, Hershman DE, Ferriss RS, Henson GT (1993) The influence of crop-rotation and soil fumigation on a mycorrhizal fungal community associated with soybean. Mycorrhiza 3:171–182

    Article  Google Scholar 

  • Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1998) Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202:86–96

    Google Scholar 

  • Araim G, Saleem A, Arnason JT, Charest C (2009) Root colonization by arbuscular mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower, Echinacea purpurea (L.) Moench. J Agric Food Chem 57:2255–2258

    CAS  PubMed  Article  Google Scholar 

  • Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64:269–285

    Article  Google Scholar 

  • Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M (2009) Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 41:1491–1496

    CAS  Article  Google Scholar 

  • Berta G, Sampo S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctonia root-rot of tomato by Glomus mosseae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Eur J Plant Pathol 111:279–288

    Article  Google Scholar 

  • Bødker L, Kjøller R, Kristensen K, Rosendahl S (2002) Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyces euteiches in field-grown pea. Mycorrhiza 12:7–12

    PubMed  Article  CAS  Google Scholar 

  • Bouamri R, Dalpé Y, Serrhini MN, Bennani A (2006) Arbuscular mycorrhizal fungi species associated with rhizosphere of Phoenix dactylifera L. in Morocco. Afr J Biotechnol 5:510–516

    Google Scholar 

  • Boyd J, Banzhaf S (2007) What are ecosystems services? Ecol Econ 63:616–626

    Article  Google Scholar 

  • Caravaca F, Alguacil MM, Azcòn R, Roldán A (2006) Formation of stable aggregates in rhizosphere soil of Juniperus oxycedrus: effect of am fungi and organic amendments. Appl Soil Ecol 33:30–38

    Article  Google Scholar 

  • Cavagnaro TR (2008) The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant Soil 304:315–325

    CAS  Article  Google Scholar 

  • Cavagnaro TR, Smith FA, Smith SE, Jakobsen I (2005) Functional diversity in arbuscular mycorrhizas: Exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ 28:642–650

    CAS  Article  Google Scholar 

  • Cavagnaro TR, Jackson LE, Six J, Ferris H, Goyal S, Asami D, Scow KM (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil 282:209–225

    CAS  Article  Google Scholar 

  • Chaudhary V, Kapoor R, Bhatnagar AK (2008) Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Appl Soil Ecol 40:174–181

    Article  Google Scholar 

  • Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494

    CAS  PubMed  Article  Google Scholar 

  • Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation patterns of root tissues by Phythophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:223–232

    CAS  Article  Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, Van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    CAS  Article  Google Scholar 

  • Croll D, Sanders IR (2009) Recombination in Glomus intraradices, a supposed ancient asexual arbuscular mycorrhizal fungus. BMC Evol Biol 9:13

    PubMed  Article  Google Scholar 

  • Cummings JA, Kovacic JP (2009) The ubiquitous role of zinc in health and disease. J Vet Emerg Crit Care 19:215–240

    Article  Google Scholar 

  • Daily GC (1997) Nature’s services. Societal dependence on natural ecosystems. Islands Press, Washington

    Google Scholar 

  • Datnoff LE, Nemec S, Pernezny K (1995) Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol Control 5:427–431

    Article  Google Scholar 

  • Diedhiou PM, Hallmann J, Oerke EC, Dehne HW (2003) Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza 13:199–204

    CAS  PubMed  Article  Google Scholar 

  • Engindeniz S (2006) Economic analysis of pesticide use on processing tomato growing: a case study for Turkey. Crop Prot 25:534–541

    Article  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    CAS  PubMed  Article  Google Scholar 

  • Farmer MJ, Li X, Feng G, Zhao B, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V, van Tuinen D (2007) Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China. Appl Soil Ecol 35:599–609

    Article  Google Scholar 

  • Fisher B, Turner RK (2008) Ecosystem services: classification for valuation. Biol Conserv 141:1167–1169

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    CAS  PubMed  Article  Google Scholar 

  • Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514

    CAS  PubMed  Article  Google Scholar 

  • Gensel PG (2008) The earliest land plants. Ann Rev Ecol Evol Syst 39:459–477

    Article  Google Scholar 

  • Gianinazzi S, Gianinazzi-Pearson V (1988) Mycorrhizae: a plant’s health insurance. Chim Oggi 10:56–68

    Google Scholar 

  • Gianinazzi S, Trouvelot A, Gianinazzi-Pearson V (1989) Conceptual approaches for the rational use of VA endomycorrhizae in agriculture: possibilities and limitations. Agric Ecosyst Environ 29:153–161

    Article  Google Scholar 

  • Gianinazzi S, Huchette O, Gianinazzi-Pearson V (2008) New outlooks in mycorrhiza applications. In: Baar J, Estaun V, Ortas I, Orfanoudakis M, Alifragis D (eds) Proceedings of the COST870 meeting “Mycorrhiza application in sustainable agriculture and natural systems”, 17–19 September 2008, Thessaloniki, Greece. pp 20–22

  • Giovannetti M, Gianinazzi-Pearson V (1994) Biodiversity in arbuscular mycorrhizal fungi. Mycol Res 98:705–715

    Article  Google Scholar 

  • Görlach B, Landgrebe-Trinkunaite R, Interwies E, Bouzit M, Darmendrail D, Rinaudo JD (2004) Assessing the ecomic impacts of soil degradation. In: Volume IV: Executive Summary Study commissioned by the European Commission, DG Environment, Study Contract ENVB1/ETU/2003/0024, Berlin

  • Hao Z, Fayolle L, van Tuinen D, Gianinazzi-Pearson V, Gianinazzi S (2009) Mycorrhiza reduce development of nematode vector og Grapevine fanleaf virus in soils and root systems. In: Boudon-Padfieu E (ed) Extended abstract 16th meeting of ICVG, Dijon, France. pp 100–1001

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157

    CAS  PubMed  Article  Google Scholar 

  • Harrison MJ, Dixon RA (1993) Isoflavonoid accumulation and expression of defense gene tgranscripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol Plant-Microbe Interact 6:643–654

    CAS  Google Scholar 

  • Harrison MJ, Dixon RA (1994) Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant J 6:9–20

    CAS  Article  Google Scholar 

  • Hart MM, Trevors JT (2005) Microbe management: application of mycorrhizal fungi in sustainable agriculture. Front Ecol Environ 3:533–539

    Article  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web. Nature 394:431

    CAS  PubMed  Article  Google Scholar 

  • Herring JR, Fantel RJ (1993) Phosphate rock demand into the next century: impact on world food supply. Nat Resour Search 2:226–246

    Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors—a synthesis. Can J Bot 71:512–518

    Google Scholar 

  • Hijri I, Sykorova Z, Oehl F, Ineichen K, Mäder P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289

    CAS  PubMed  Article  Google Scholar 

  • Hildermann I, Messmer M, Dubois D, Boller T, Wiemken A, Mäder P (2010) Nutrient use efficiency and arbuscular mycorrhizal root colonisation of winter wheat cultivars in different farming systems of the DOK long-term trial. J Sci Food Agri. doi:10.1002/jsfa.4048

  • Hooper L, Cassidy A (2006) A review of the health care potential of bioactive compounds. J Sci Food Agric 86:1805–1813

    CAS  Article  Google Scholar 

  • IAASTD (2008) Agriculture and development. International Assessment of Agricultural Science and Technology for Development, Brussels

    Google Scholar 

  • Jakobsen I (1995) Transport of phosphorus and carbon in VA mycorrhizas. In: Varma A, Hock B (eds) Mycorrhiza. Springer-Verlag, Berlin, pp 297–324

    Google Scholar 

  • Jeffries P, Gianinazzi S, Peretto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young JPW, Read DJ (2003) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515

    Article  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002a) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World J Microbiol Biotechnol 18:459–463

    CAS  Article  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2002b) Mycorrhization of coriander (Coriandrum sativum L) to enhance the concentration and quality of essential oil. J Sci Food Agric 82:339–342

    CAS  Article  Google Scholar 

  • Kapoor R, Giri B, Mukerji KG (2004) Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour Technol 93:307–311

    CAS  PubMed  Article  Google Scholar 

  • Khade SW, Adholeyavan A (2009) Arbuscular mycorrhizal association in plants growing on metal-contaminated and noncontaminated soils. Water Air Soil Pollut 202:45–56

    CAS  Article  Google Scholar 

  • Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16:443–446

    CAS  PubMed  Article  Google Scholar 

  • Kiers ET, Hutton MG, Denison RF (2007) Human selection and the relaxation of legume defences against ineffective rhizobia. Proc R Soc Lond B Biol Sci 274:3119–3126

    CAS  Article  Google Scholar 

  • Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355

    CAS  PubMed  Article  Google Scholar 

  • Krishna H, Singh SK, Sharma RR, Khawale RN, Grover M, Patel VB (2005) Biochemical changes in micropropagated grape (Vitis vinifera L.) plantlets due to arbuscular-mycorrhizal fungi (AMF) inoculation during ex vitro acclimatization. Sci Hortic 106:554–567

    CAS  Article  Google Scholar 

  • Lal R (2009) Soil degradation as a reason for inadequate human nutrition. Food Security 1:45–57

    Article  Google Scholar 

  • Leake JR, Johnson D, Donnelly D, Muckle G, Boddy L, Read D (2004) Network of power and influence: The role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045

    Article  Google Scholar 

  • Lee J, Scagel CF (2009) Chicoric acid found in basil (Ocinum basilicum L.) leaves. Food Chem 115:650–656

    CAS  Article  Google Scholar 

  • López-Millán AF, Sagardoy R, Solanas M, Abadía A, Abadía J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot 65:376–385

    Article  CAS  Google Scholar 

  • Lugon-Moulin N, Ryan L, Donini P, Rossi L (2006) Cadmium content of phosphate fertilizers used for tobacco production. Agron Sust Dev 26:151–155

    CAS  Article  Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102

    CAS  Google Scholar 

  • Martinez-Medina A, Pascual JA, Lloret E, Roldan A (2009) Interactions between arbuscular mycorrhizal fungi and Trichoderma harzianum and their effects on Fusarium wilt in melon plants grown in seedling nurseries. J Sci Food Agric 89:1843–1850

    CAS  Article  Google Scholar 

  • Marulanda A, Barea JM (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    CAS  Article  Google Scholar 

  • Marulanda A, Barea JM, Azcon R (2006) An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb Ecol 52:670–678

    CAS  PubMed  Article  Google Scholar 

  • Marulanda-Aguirre A, Azcon R, Ruiz-Lozano JM, Aroca R (2008) Differential effects of a Bacillus megaterium strain on Lactuca sativa plant growth depending on the origin of the arbuscular mycorrhizal fungus coinoculated: physiologic and biochemical traits. J Plant Growth Regul 27:10–18

    CAS  Article  Google Scholar 

  • Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251

    CAS  Article  Google Scholar 

  • Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364

    Article  Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 83:991–1000

    Article  Google Scholar 

  • Nziguheba G, Smolders E (2008) Inputs of trace elements in agricultural soils via phosphate fertilizers in european countries. Sci Total Environ 390:53–57

    CAS  PubMed  Article  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microbiol 69:2816–2824

    CAS  PubMed  Article  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283

    PubMed  Article  Google Scholar 

  • Pagiola S (2007) Payments for environmental services in Costa Rica. Ecol Econ 65:712–724

    Article  Google Scholar 

  • Perner H, Rohn S, Driemel G, Batt N, Schwarz D, Kroh LW, George E (2008) Effect of nitrogen species supply and mycorrhizal colonization on organosulfur and phenolic compounds in onions. J Agric Food Chem 56:3538–3545

    CAS  PubMed  Article  Google Scholar 

  • Pimm LS (1997) The value of everything. Nature 387:231–232

    Article  Google Scholar 

  • Porras-Soriano A, Soriano-Martin ML, Porras-Piedra A, Azcon R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359

    CAS  PubMed  Article  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi in defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    CAS  PubMed  Article  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    CAS  PubMed  Article  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843

    CAS  PubMed  Article  Google Scholar 

  • Rillig MC, Mummey D (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    CAS  PubMed  Article  Google Scholar 

  • Rillig MC, Wright SF, Nichols KA, Schmid WF, Torn MS (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant Soil 238:325–333

    CAS  Article  Google Scholar 

  • Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185

    CAS  PubMed  Article  Google Scholar 

  • Robertson GP, Swinton SM (2005) Reconciling agricultural productivity and environmental integrity is a grand challenge for agriculture. The Ecological Society of America 3:39–46

    Google Scholar 

  • Roose T, Fowler AC (2004) A mathematical model for water and nutrient uptake by plant root systems. J Theor Biol 228:173–184

    CAS  PubMed  Article  Google Scholar 

  • Roth-Nebelsick A, Konrad W (2003) Assimilation and transpiration capabilities of rhyniophytic plants from the Lower Devonian and their implications for paleoatmospheric CO2 concentration. Palaeogeogr Palaeoclimatol Palaeoecol 202:153–178

    Article  Google Scholar 

  • Sailo GL, Bagyaraj DJ (2005) Influence of different AM fungi on the growth, nutrition and forskolin content of Coleus forskohlii. Mycol Res 109:795–798

    CAS  PubMed  Article  Google Scholar 

  • Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochem 69:112–146

    CAS  Article  Google Scholar 

  • Schüssler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Seeram NP (2008) Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J Agric Food Chem 56:627–629

    CAS  PubMed  Article  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358

    CAS  PubMed  Article  Google Scholar 

  • Stan SD, Kar S, Stoner GD, Singh SV (2008) Bioactive food components and cancer risk reduction. J Cell Biochem 104:339–356

    CAS  PubMed  Article  Google Scholar 

  • Strack D, Fester T (2006) Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytol 172:22–34

    CAS  PubMed  Article  Google Scholar 

  • Talavera M, Itou K, Mizukubo T (2001) Reduction of nematode damage by root colonization with arbuscular mycorrhiza (Glomus spp.) in tomato-Meloidogyne incognita (Tylenchida: Meloidogynidae) and carrot-Pratylenchus penetrans (Tylenchida: Pratylenchidae) pathosystems. Appl Entomol Zool 36:387–392

    Article  Google Scholar 

  • Thygesen K, Larsen J, Bødker L (2004) Arbuscular mycorrhizal fungi reduce development of pea root-rot caused by Aphanomyces euteiches using oospores as pathogen inoculum. Eur J Plant Pathol 110:411–419

    CAS  Article  Google Scholar 

  • Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollotte A (1993) In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol Res 97:245–250

    CAS  Article  Google Scholar 

  • Torres-Barragan A, Zavaleta-Mejia E, Gonzalez-Chavez C, Ferrera-Cerrato R (1996) The use of arbuscular mycorrhizae to control onion white rot (Sclerotium cepivorum Berk.) under field conditions. Mycorrhiza 6:253–257

    Article  Google Scholar 

  • Toth R, Toth D, Starke D, Smith DR (1990) Vesicular-arbuscular mycorrhizal colonization in Zea mays affected by breeding for resistance to fungal pathogens. Can J Bot 68:1039–1044

    Article  Google Scholar 

  • Toussaint JP, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297

    CAS  PubMed  Article  Google Scholar 

  • Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya codii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190

    PubMed  Article  Google Scholar 

  • Utkhede R (2006) Increased growth and yield of hydroponically grown greenhouse tomato plants inoculated with arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. radicis-lycopersici. Biocontrol 51:393–400

    Article  Google Scholar 

  • Wallace KJ (2007) Classification of ecosystem services: problems and solutions. Biol Conserv 139:235–246

    Article  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461

    PubMed  Article  Google Scholar 

  • Zhu YG, Smith SE, Barritt AR, Smith FA (2001) Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237:249–255

    CAS  Article  Google Scholar 

Download references

Acknowledgments

We are grateful to V. Gianinazzi-Pearson for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Wipf.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gianinazzi, S., Gollotte, A., Binet, MN. et al. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20, 519–530 (2010). https://doi.org/10.1007/s00572-010-0333-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-010-0333-3

Keywords

  • Arbuscular mycorrhiza
  • Ecosystem services
  • Agroecology
  • Ecosystem sustainability