Akkopru A, Demir S (2005) Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J Phytopathol 153:544–550
Article
Google Scholar
Altieri MA (1995) Agroecology: the science of sustainable agriculture. Westview Press, Boulder
Google Scholar
Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31
Article
Google Scholar
An ZQ, Hendrix JW, Hershman DE, Ferriss RS, Henson GT (1993) The influence of crop-rotation and soil fumigation on a mycorrhizal fungal community associated with soybean. Mycorrhiza 3:171–182
Article
Google Scholar
Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1998) Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202:86–96
Google Scholar
Araim G, Saleem A, Arnason JT, Charest C (2009) Root colonization by arbuscular mycorrhizal (AM) fungus increases growth and secondary metabolism of purple coneflower, Echinacea purpurea (L.) Moench. J Agric Food Chem 57:2255–2258
CAS
PubMed
Article
Google Scholar
Barrios E (2007) Soil biota, ecosystem services and land productivity. Ecol Econ 64:269–285
Article
Google Scholar
Bedini S, Pellegrino E, Avio L, Pellegrini S, Bazzoffi P, Argese E, Giovannetti M (2009) Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 41:1491–1496
CAS
Article
Google Scholar
Berta G, Sampo S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctonia root-rot of tomato by Glomus mosseae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Eur J Plant Pathol 111:279–288
Article
Google Scholar
Bødker L, Kjøller R, Kristensen K, Rosendahl S (2002) Interactions between indigenous arbuscular mycorrhizal fungi and Aphanomyces euteiches in field-grown pea. Mycorrhiza 12:7–12
PubMed
Article
CAS
Google Scholar
Bouamri R, Dalpé Y, Serrhini MN, Bennani A (2006) Arbuscular mycorrhizal fungi species associated with rhizosphere of Phoenix dactylifera L. in Morocco. Afr J Biotechnol 5:510–516
Google Scholar
Boyd J, Banzhaf S (2007) What are ecosystems services? Ecol Econ 63:616–626
Article
Google Scholar
Caravaca F, Alguacil MM, Azcòn R, Roldán A (2006) Formation of stable aggregates in rhizosphere soil of Juniperus oxycedrus: effect of am fungi and organic amendments. Appl Soil Ecol 33:30–38
Article
Google Scholar
Cavagnaro TR (2008) The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations: a review. Plant Soil 304:315–325
CAS
Article
Google Scholar
Cavagnaro TR, Smith FA, Smith SE, Jakobsen I (2005) Functional diversity in arbuscular mycorrhizas: Exploitation of soil patches with different phosphate enrichment differs among fungal species. Plant Cell Environ 28:642–650
CAS
Article
Google Scholar
Cavagnaro TR, Jackson LE, Six J, Ferris H, Goyal S, Asami D, Scow KM (2006) Arbuscular mycorrhizas, microbial communities, nutrient availability, and soil aggregates in organic tomato production. Plant Soil 282:209–225
CAS
Article
Google Scholar
Chaudhary V, Kapoor R, Bhatnagar AK (2008) Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of Artemisia annua L. Appl Soil Ecol 40:174–181
Article
Google Scholar
Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494
CAS
PubMed
Article
Google Scholar
Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation patterns of root tissues by Phythophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:223–232
CAS
Article
Google Scholar
Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, Van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260
CAS
Article
Google Scholar
Croll D, Sanders IR (2009) Recombination in Glomus intraradices, a supposed ancient asexual arbuscular mycorrhizal fungus. BMC Evol Biol 9:13
PubMed
Article
Google Scholar
Cummings JA, Kovacic JP (2009) The ubiquitous role of zinc in health and disease. J Vet Emerg Crit Care 19:215–240
Article
Google Scholar
Daily GC (1997) Nature’s services. Societal dependence on natural ecosystems. Islands Press, Washington
Google Scholar
Datnoff LE, Nemec S, Pernezny K (1995) Biological control of Fusarium crown and root rot of tomato in Florida using Trichoderma harzianum and Glomus intraradices. Biol Control 5:427–431
Article
Google Scholar
Diedhiou PM, Hallmann J, Oerke EC, Dehne HW (2003) Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza 13:199–204
CAS
PubMed
Article
Google Scholar
Engindeniz S (2006) Economic analysis of pesticide use on processing tomato growing: a case study for Turkey. Crop Prot 25:534–541
Article
Google Scholar
Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280
CAS
PubMed
Article
Google Scholar
Farmer MJ, Li X, Feng G, Zhao B, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V, van Tuinen D (2007) Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China. Appl Soil Ecol 35:599–609
Article
Google Scholar
Fisher B, Turner RK (2008) Ecosystem services: classification for valuation. Biol Conserv 141:1167–1169
Article
Google Scholar
Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574
CAS
PubMed
Article
Google Scholar
Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55:501–514
CAS
PubMed
Article
Google Scholar
Gensel PG (2008) The earliest land plants. Ann Rev Ecol Evol Syst 39:459–477
Article
Google Scholar
Gianinazzi S, Gianinazzi-Pearson V (1988) Mycorrhizae: a plant’s health insurance. Chim Oggi 10:56–68
Google Scholar
Gianinazzi S, Trouvelot A, Gianinazzi-Pearson V (1989) Conceptual approaches for the rational use of VA endomycorrhizae in agriculture: possibilities and limitations. Agric Ecosyst Environ 29:153–161
Article
Google Scholar
Gianinazzi S, Huchette O, Gianinazzi-Pearson V (2008) New outlooks in mycorrhiza applications. In: Baar J, Estaun V, Ortas I, Orfanoudakis M, Alifragis D (eds) Proceedings of the COST870 meeting “Mycorrhiza application in sustainable agriculture and natural systems”, 17–19 September 2008, Thessaloniki, Greece. pp 20–22
Giovannetti M, Gianinazzi-Pearson V (1994) Biodiversity in arbuscular mycorrhizal fungi. Mycol Res 98:705–715
Article
Google Scholar
Görlach B, Landgrebe-Trinkunaite R, Interwies E, Bouzit M, Darmendrail D, Rinaudo JD (2004) Assessing the ecomic impacts of soil degradation. In: Volume IV: Executive Summary Study commissioned by the European Commission, DG Environment, Study Contract ENVB1/ETU/2003/0024, Berlin
Hao Z, Fayolle L, van Tuinen D, Gianinazzi-Pearson V, Gianinazzi S (2009) Mycorrhiza reduce development of nematode vector og Grapevine fanleaf virus in soils and root systems. In: Boudon-Padfieu E (ed) Extended abstract 16th meeting of ICVG, Dijon, France. pp 100–1001
Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157
CAS
PubMed
Article
Google Scholar
Harrison MJ, Dixon RA (1993) Isoflavonoid accumulation and expression of defense gene tgranscripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol Plant-Microbe Interact 6:643–654
CAS
Google Scholar
Harrison MJ, Dixon RA (1994) Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of Medicago truncatula and the mycorrhizal fungus Glomus versiforme. Plant J 6:9–20
CAS
Article
Google Scholar
Hart MM, Trevors JT (2005) Microbe management: application of mycorrhizal fungi in sustainable agriculture. Front Ecol Environ 3:533–539
Article
Google Scholar
Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web. Nature 394:431
CAS
PubMed
Article
Google Scholar
Herring JR, Fantel RJ (1993) Phosphate rock demand into the next century: impact on world food supply. Nat Resour Search 2:226–246
Google Scholar
Hetrick BAD, Wilson GWT, Cox TS (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors—a synthesis. Can J Bot 71:512–518
Google Scholar
Hijri I, Sykorova Z, Oehl F, Ineichen K, Mäder P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289
CAS
PubMed
Article
Google Scholar
Hildermann I, Messmer M, Dubois D, Boller T, Wiemken A, Mäder P (2010) Nutrient use efficiency and arbuscular mycorrhizal root colonisation of winter wheat cultivars in different farming systems of the DOK long-term trial. J Sci Food Agri. doi:10.1002/jsfa.4048
Hooper L, Cassidy A (2006) A review of the health care potential of bioactive compounds. J Sci Food Agric 86:1805–1813
CAS
Article
Google Scholar
IAASTD (2008) Agriculture and development. International Assessment of Agricultural Science and Technology for Development, Brussels
Google Scholar
Jakobsen I (1995) Transport of phosphorus and carbon in VA mycorrhizas. In: Varma A, Hock B (eds) Mycorrhiza. Springer-Verlag, Berlin, pp 297–324
Google Scholar
Jeffries P, Gianinazzi S, Peretto S, Turnau K, Barea JM (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16
Google Scholar
Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young JPW, Read DJ (2003) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515
Article
Google Scholar
Kapoor R, Giri B, Mukerji KG (2002a) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World J Microbiol Biotechnol 18:459–463
CAS
Article
Google Scholar
Kapoor R, Giri B, Mukerji KG (2002b) Mycorrhization of coriander (Coriandrum sativum L) to enhance the concentration and quality of essential oil. J Sci Food Agric 82:339–342
CAS
Article
Google Scholar
Kapoor R, Giri B, Mukerji KG (2004) Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour Technol 93:307–311
CAS
PubMed
Article
Google Scholar
Khade SW, Adholeyavan A (2009) Arbuscular mycorrhizal association in plants growing on metal-contaminated and noncontaminated soils. Water Air Soil Pollut 202:45–56
CAS
Article
Google Scholar
Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16:443–446
CAS
PubMed
Article
Google Scholar
Kiers ET, Hutton MG, Denison RF (2007) Human selection and the relaxation of legume defences against ineffective rhizobia. Proc R Soc Lond B Biol Sci 274:3119–3126
CAS
Article
Google Scholar
Kirby J, Keasling JD (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu Rev Plant Biol 60:335–355
CAS
PubMed
Article
Google Scholar
Krishna H, Singh SK, Sharma RR, Khawale RN, Grover M, Patel VB (2005) Biochemical changes in micropropagated grape (Vitis vinifera L.) plantlets due to arbuscular-mycorrhizal fungi (AMF) inoculation during ex vitro acclimatization. Sci Hortic 106:554–567
CAS
Article
Google Scholar
Lal R (2009) Soil degradation as a reason for inadequate human nutrition. Food Security 1:45–57
Article
Google Scholar
Leake JR, Johnson D, Donnelly D, Muckle G, Boddy L, Read D (2004) Network of power and influence: The role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045
Article
Google Scholar
Lee J, Scagel CF (2009) Chicoric acid found in basil (Ocinum basilicum L.) leaves. Food Chem 115:650–656
CAS
Article
Google Scholar
López-Millán AF, Sagardoy R, Solanas M, Abadía A, Abadía J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Bot 65:376–385
Article
CAS
Google Scholar
Lugon-Moulin N, Ryan L, Donini P, Rossi L (2006) Cadmium content of phosphate fertilizers used for tobacco production. Agron Sust Dev 26:151–155
CAS
Article
Google Scholar
Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159:89–102
CAS
Google Scholar
Martinez-Medina A, Pascual JA, Lloret E, Roldan A (2009) Interactions between arbuscular mycorrhizal fungi and Trichoderma harzianum and their effects on Fusarium wilt in melon plants grown in seedling nurseries. J Sci Food Agric 89:1843–1850
CAS
Article
Google Scholar
Marulanda A, Barea JM (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124
CAS
Article
Google Scholar
Marulanda A, Barea JM, Azcon R (2006) An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb Ecol 52:670–678
CAS
PubMed
Article
Google Scholar
Marulanda-Aguirre A, Azcon R, Ruiz-Lozano JM, Aroca R (2008) Differential effects of a Bacillus megaterium strain on Lactuca sativa plant growth depending on the origin of the arbuscular mycorrhizal fungus coinoculated: physiologic and biochemical traits. J Plant Growth Regul 27:10–18
CAS
Article
Google Scholar
Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251
CAS
Article
Google Scholar
Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364
Article
Google Scholar
Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 83:991–1000
Article
Google Scholar
Nziguheba G, Smolders E (2008) Inputs of trace elements in agricultural soils via phosphate fertilizers in european countries. Sci Total Environ 390:53–57
CAS
PubMed
Article
Google Scholar
Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microbiol 69:2816–2824
CAS
PubMed
Article
Google Scholar
Oehl F, Sieverding E, Ineichen K, Ris EA, Boller T, Wiemken A (2005) Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems. New Phytol 165:273–283
PubMed
Article
Google Scholar
Pagiola S (2007) Payments for environmental services in Costa Rica. Ecol Econ 65:712–724
Article
Google Scholar
Perner H, Rohn S, Driemel G, Batt N, Schwarz D, Kroh LW, George E (2008) Effect of nitrogen species supply and mycorrhizal colonization on organosulfur and phenolic compounds in onions. J Agric Food Chem 56:3538–3545
CAS
PubMed
Article
Google Scholar
Pimm LS (1997) The value of everything. Nature 387:231–232
Article
Google Scholar
Porras-Soriano A, Soriano-Martin ML, Porras-Piedra A, Azcon R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359
CAS
PubMed
Article
Google Scholar
Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar C (2002) Localized versus systemic effect of arbuscular mycorrhizal fungi in defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534
CAS
PubMed
Article
Google Scholar
Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921
CAS
PubMed
Article
Google Scholar
Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843
CAS
PubMed
Article
Google Scholar
Rillig MC, Mummey D (2006) Mycorrhizas and soil structure. New Phytol 171:41–53
CAS
PubMed
Article
Google Scholar
Rillig MC, Wright SF, Nichols KA, Schmid WF, Torn MS (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant Soil 238:325–333
CAS
Article
Google Scholar
Rivera-Becerril F, Calantzis C, Turnau K, Caussanel JP, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185
CAS
PubMed
Article
Google Scholar
Robertson GP, Swinton SM (2005) Reconciling agricultural productivity and environmental integrity is a grand challenge for agriculture. The Ecological Society of America 3:39–46
Google Scholar
Roose T, Fowler AC (2004) A mathematical model for water and nutrient uptake by plant root systems. J Theor Biol 228:173–184
CAS
PubMed
Article
Google Scholar
Roth-Nebelsick A, Konrad W (2003) Assimilation and transpiration capabilities of rhyniophytic plants from the Lower Devonian and their implications for paleoatmospheric CO2 concentration. Palaeogeogr Palaeoclimatol Palaeoecol 202:153–178
Article
Google Scholar
Sailo GL, Bagyaraj DJ (2005) Influence of different AM fungi on the growth, nutrition and forskolin content of Coleus forskohlii. Mycol Res 109:795–798
CAS
PubMed
Article
Google Scholar
Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochem 69:112–146
CAS
Article
Google Scholar
Schüssler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421
Article
Google Scholar
Seeram NP (2008) Berry fruits: compositional elements, biochemical activities, and the impact of their intake on human health, performance, and disease. J Agric Food Chem 56:627–629
CAS
PubMed
Article
Google Scholar
Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London
Google Scholar
Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358
CAS
PubMed
Article
Google Scholar
Stan SD, Kar S, Stoner GD, Singh SV (2008) Bioactive food components and cancer risk reduction. J Cell Biochem 104:339–356
CAS
PubMed
Article
Google Scholar
Strack D, Fester T (2006) Isoprenoid metabolism and plastid reorganization in arbuscular mycorrhizal roots. New Phytol 172:22–34
CAS
PubMed
Article
Google Scholar
Talavera M, Itou K, Mizukubo T (2001) Reduction of nematode damage by root colonization with arbuscular mycorrhiza (Glomus spp.) in tomato-Meloidogyne incognita (Tylenchida: Meloidogynidae) and carrot-Pratylenchus penetrans (Tylenchida: Pratylenchidae) pathosystems. Appl Entomol Zool 36:387–392
Article
Google Scholar
Thygesen K, Larsen J, Bødker L (2004) Arbuscular mycorrhizal fungi reduce development of pea root-rot caused by Aphanomyces euteiches using oospores as pathogen inoculum. Eur J Plant Pathol 110:411–419
CAS
Article
Google Scholar
Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollotte A (1993) In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol Res 97:245–250
CAS
Article
Google Scholar
Torres-Barragan A, Zavaleta-Mejia E, Gonzalez-Chavez C, Ferrera-Cerrato R (1996) The use of arbuscular mycorrhizae to control onion white rot (Sclerotium cepivorum Berk.) under field conditions. Mycorrhiza 6:253–257
Article
Google Scholar
Toth R, Toth D, Starke D, Smith DR (1990) Vesicular-arbuscular mycorrhizal colonization in Zea mays affected by breeding for resistance to fungal pathogens. Can J Bot 68:1039–1044
Article
Google Scholar
Toussaint JP, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297
CAS
PubMed
Article
Google Scholar
Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya codii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190
PubMed
Article
Google Scholar
Utkhede R (2006) Increased growth and yield of hydroponically grown greenhouse tomato plants inoculated with arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. radicis-lycopersici. Biocontrol 51:393–400
Article
Google Scholar
Wallace KJ (2007) Classification of ecosystem services: problems and solutions. Biol Conserv 139:235–246
Article
Google Scholar
Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227
Article
Google Scholar
Wilson GWT, Rice CW, Rillig MC, Springer A, Hartnett DC (2009) Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: results from long-term field experiments. Ecol Lett 12:452–461
PubMed
Article
Google Scholar
Zhu YG, Smith SE, Barritt AR, Smith FA (2001) Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237:249–255
CAS
Article
Google Scholar