Skip to main content

Advertisement

Log in

The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats

  • Review
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Ecosystems worldwide are threatened with the extinction of plants and, at the same time, invasion by new species. Plant invasiveness and loss of species can be caused by similar but opposing pressures on the community structures. Arbuscular mycorrhizal fungi (AMF) can have multiple positive effects on plant growth, productivity, health, and stress relief. Many endangered species live in symbiosis with AMF. However, the list of the International Union for Conservation of Nature and Natural Resources (IUCN Red List of Threatened Species) indicates that the mycorrhizal status of most of the threatened species has not been assessed. Rare plants often occur in specialized and also endangered habitats and might utilize specialized or unique AMF. The specificity of any endangered plant to its AMF population has not been investigated. Because most of the current AMF isolates that are available colonize a broad range of plant species, selected inocula could be used to promote growth of endangered plants before the proper and more effective indigenous AMF are characterized. Application of AMF in field sites to protect endangered plants is hardly feasible due to the complexity of plant community structures and the large amount of fungal inocula needed. Endangered plants could, however, be grown as greenhouse cultures together with appropriate fungi, and, at the relevant developmental stage, they could be re-planted into native sites to prevent extinction and to preserve plant community ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to specific interactions. Science 301:1377–1378

    Article  CAS  PubMed  Google Scholar 

  • Bedini S, Pellegrino E, Avio L, Pellegrino S, Bazoffi P, Argese E, Giovannetti M (2009) Changes in soil aggregation and glomalin-related soil protein content as affected by the arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol Biochem 41:1491–1496

    Article  CAS  Google Scholar 

  • Belesky DP, Bacon CW (2009) Tall fescue and associated mutualistic toxic fungal endophytes in agroecosystems. Toxin Rev 28:102–117

    Article  CAS  Google Scholar 

  • Blumenthal D (2005) Interrelated causes of plant invasion. Science 310:243–244

    Article  CAS  PubMed  Google Scholar 

  • Bonkowski M, Villenace C, Griffith B (2009) Rhizosphere fauna: the functional and structural diversity of intimate interactions of soil fauna with plant roots. Plant Soil 321:213–233

    Article  CAS  Google Scholar 

  • Bossdorf O, Lipowsky A, Prati D (2008) Selection of preadapted populations allowed Senecio inaequidens to invade Central Europe. Div Distrib 14:676–685

    Article  Google Scholar 

  • Bothe H, Regvar M, Turnau K (2009) Arbuscular mycorrhiza, heavy metal and salt tolerance. In: Sherameti I, Varma A (eds) Soil heavy metals. Springer, Heidelberg, pp 87–111

    Google Scholar 

  • Broz AK, Manter DK, Vivanco JM (2007) Soil fungal abundance and diversity: another victim of the invasive plant Centaurea maculosa. ISME J 1:763–765

    Article  CAS  PubMed  Google Scholar 

  • Bucher M (2007) Functional biology of phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26

    Article  CAS  PubMed  Google Scholar 

  • Callaway RM, Cipollini D, Barto K, Thelen GC, Hallet SG et al (2008) Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89:1043–1055

    Article  PubMed  Google Scholar 

  • Caravaca F, Alguaci MD, Torres P, Roldan A (2005) Microbial activity and arbuscular mycorrhizal fungi colonization in the rhizosphere of the salt marsh plant Inula crithmoides L. along a spatial salinity gradient. Wetlands 25:350–355

    Article  Google Scholar 

  • Carvalho LM, Caçador I, Martins-Loução MA (2001) Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary (Portugal). Mycorrhiza 11:303–309

    Article  Google Scholar 

  • Carvalho LM, Correira PM, Caçador I, Martins-Loução MA (2003) Effects of salinity and flooding on the infectivity of salt marsh arbuscular mycorrhizal fungi in Aster tripolium L. Biol Fert Soils 38:137–143

    Article  Google Scholar 

  • DeMars BG, Boerner REJ (1996) Vesicular arbuscular mycorrhizal development in the Brassicaceae in relation to plant life span. Flora 191:179–189

    Google Scholar 

  • Džafič E, Pongrac P, Likar M, Vogel-Mikuš K, Regvar M (2009) Colonization of maize (Zea mays) with the arbuscular mycorrhizal fungus Glomus mosseae alleviates negative effects of Festuca pratensis and Zea mays root extracts. Allelopathy J (in press)

  • Ellenberg HH (2009) Vegetation ecology of Central Europe, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Ernst HWO (1982) Schwermetallpflanzen. In: Kinzel H (ed) Pflanzenökologie und Mineralstoffwechsel. E Ulmer, Stuttgart, pp 474–506

    Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    Article  CAS  PubMed  Google Scholar 

  • Feldmann F, Hallmann J, Wagner S, Long X-Q, Schneider C et al. (2008) Myorrhizal fungi as biological components of integrated cucumber production (BIOMYC)—promising results for mycorrhizal technology transfer to horticultural practice. In: Feldmann F, Kapulnik Y, Baar J (eds) Mycorrhiza works. DPG Selbstverlag, Braunschweig, ISBN:978-3-941261-01-3

  • Feldmann F, Gillesen M, Hutter I, Schneider C (2009) Should we breed for effective mycorrhiza symbioses? In: Feldmann F, Alford DV, Furk C (eds) Crop plant resistance to biotic and abiotic factors, current potential and future demands. Braunschweig: DPG Selbstverlag., ISBN: 978-3-941261-05-1, pp 507–522

  • Ferrol N, Boller T, Azcon-Aguilar C (2008) Otospora barei, a new fungal species in the Glomeromycetes from a dolomitic shrub land in Sierra de Baca National Park (Granada, Spain). Mycologia 100:296–305

    Article  PubMed  Google Scholar 

  • Fuchs B, Haselwandter K (2004) Red list plants: colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 14:277–281

    Article  CAS  PubMed  Google Scholar 

  • Fuchs B, Haselwandter K (2008) Arbuscular mycorrhiza of endangered plant species: potential impacts on restoration strategies. In: Varma A (ed) Mycorrhiza, 3rd edn. Heidelberg, Berlin, pp 565–579

    Google Scholar 

  • Fumanal B, Plenchette C, Chuvel R, Bretagnolle F (2006) Which role can arbuscular mycorrhizal fungi play in the facilitation of Ambrosia artemisiifolia L. invasion in France? Mycorrhiza 17:25–35

    Article  CAS  PubMed  Google Scholar 

  • Füzy A, Biro B, Toth T, Hildebrandt U, Bothe H (2008) Drought, but not salinity, determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi. J Plant Physiol 165:1181–1192

    Article  PubMed  CAS  Google Scholar 

  • Giovanetti M, Mosse B (1980) Evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Greszta J (1988) Detrimental effect of dusts emitted by various industries on trees and forest biotope. Sc Pap Cracow Agric Acad 226:1–196

    Google Scholar 

  • Grodziński W, Weiner J, Maycock PF (1984) Forest ecosystems in industrial regions. Springer Verlag, Heidelberg, p 277

    Google Scholar 

  • Grzybowska B (2004) Arbuscular mycorrhiza of herbs colonizing a salt affected area near Kraków (Poland). Acta Societ Botanic Polon 73:247–253

    Google Scholar 

  • Guo BZ, Hendrix JW, An Z-Q, Ferriss RS (1992) Role of Acremonium endophyte of fescue on inhibition of colonisation and reproduction of mycorrhizal fungi. Mycologia 84:882–885

    Article  Google Scholar 

  • Hallett PD, Feeney DS, Bengough AG, Rillig MC, Scrimgeour CM, Young IM (2009) Disentangling the impact of AM fungi versus root on soil structure and water transport. Plant Soil 314:183–196

    Article  CAS  Google Scholar 

  • Harley JL, Harley EL (1987) A checklist of mycorrhiza in the British flora. New Phytol 107:741–749

    Article  Google Scholar 

  • Hart MM, Reader RJ (2002) Host plant benefit from association with arbuscular mycorrhizal fungi: variations due to differences in size of mycelium. Biol Fertil Soils 36:357–366

    Article  Google Scholar 

  • Hempel S, Renker C, Buscot F (2007) Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. Environ Microbiol 9:1–9

    Article  CAS  Google Scholar 

  • Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonisation by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–717

    CAS  Google Scholar 

  • Hildebrandt U, Janetta K, Ouziad F, Renne B, Nawrath K, Bothe H (2001) Arbuscular mycorrhizal colonization of halophytes in Central European salt marshes. Mycorrhiza 10:175–183

    Article  CAS  Google Scholar 

  • Hildebrandt U, Ouziad F, Marner FJ, Bothe H (2006a) The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett 254:258–267

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt U, Hoef-Emden K, Backhausen S, Bothe H, Bozek M, Siuta A, Kuta E (2006b) The rare endemic zinc violets of Central Europe originate from Viola lutea Huds. Plant Syst Evol 257:205–222

    Article  Google Scholar 

  • Hildebrandt U, Regvar M, Bothe H (2007) Arbuscular mycorrhiza and heavy metal tolerance. Phytochem 68:139–146

    Article  CAS  Google Scholar 

  • Hodge A (2009) Root decisions. Plant Cell Environ 32:628–640

    Article  PubMed  Google Scholar 

  • Janouskova M, Seddas P, Mrnka L, Van Tuinen D, Dvrackova A, Tallot M et al (2009) Development and activity of Glomus intraradices as affected by co-existence with Glomus claroideum in one root system. Mycorrhiza 19:383–402

    Article  Google Scholar 

  • Jayahandran K, Fisher J (2008) Arbuscular mycorrhizae and their role in plant restoration in native ecosystems. In: Siddiqui ZA, Aktar MS, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer Science + Business Media BV, Heidelberg, pp 195–209

    Chapter  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea J-M (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fertil Soils 37:1–16

    Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135:575–585

    Article  Google Scholar 

  • Jones MD, Smith SE (2004) Exploring functional definitions of mycorrhizas: are mycorrhizas always mutualisms? Can J Bot 82:1089–1109

    Article  Google Scholar 

  • Juniper S, Abbott LK (1993) Vesicular–arbuscular mycorrhizas and soil salinity. Mycorrhiza 4:45–47

    Article  Google Scholar 

  • Juniper S, Abbott LK (2006) Soil salinity delays germination and limits growth of hyphae from propagules of arbuscular mycorrhizal fungi. Mycorrhiza 16:371–379

    Article  CAS  PubMed  Google Scholar 

  • Jurkiewicz A, Ryszka P, Anielska T, Turnau K (2010) Optimization of culture conditions of Arnica montana L.: effects of mycorrhizal fungi and competing plants. Mycorrhiza 20:293–306

    Article  PubMed  Google Scholar 

  • Kaldorf MO, Kuhn AJ, Schröder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154:718–728

    CAS  Google Scholar 

  • Keddy P (2000) Wedland ecology: principles and conservation. Cambridge University Press, New York

    Google Scholar 

  • Keer GH, Zedler JB (2002) Salt marsh canopy architecture differs with the number and composition of species. Ecol Applications 12:456–473

    Article  Google Scholar 

  • Klingner A, Bothe H, Wray V, Marner FJ (1995) Identification of a yellow pigment formed in maize roots upon mycorrhizal colonization. Phytochem 38:53–55

    Article  CAS  Google Scholar 

  • Klironomos JM (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:67–70

    Article  CAS  PubMed  Google Scholar 

  • Klironomos JM, McCune J, Hart M, Neville J (2000) The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol Lett 3:137–141

    Article  Google Scholar 

  • Kogel K-H, Franken P, Hückelhoven R (2006) Endophyte or parasite—what decides? Curr Opin Plant Biol 9:358–363

    Article  PubMed  Google Scholar 

  • Lacourt ID, Angelo S, Girlanda M, Turnau K, Bonfante P, Perrotto S (2000) Genetic polymorphism and metal sensitivity of Oidiodendron maius strains isolated from polluted soil. Annals Microbiol 50:157–155

    CAS  Google Scholar 

  • Landwehr M, Hildebrandt U, Wilde P, Nawrath K, Tóth T, Biro B, Bothe H (2002) The arbuscular mycorrhizal fungus Glomus geosporum in European saline, sodic and gypsum soils. Mycorrhiza 12:199–211

    Article  CAS  PubMed  Google Scholar 

  • Lekberg Y, Koide RT, Rohr JR, Aldrich-Wolfe L, Morton JB (2007) Role of niche restrictions and dispersal in the composition of arbuscular mycorrhizal fungal communities. J Ecol 95:95–105

    Article  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) The effect of heavy metal pollution on mycorrhizal colonization and function, physiological, ecological and applied aspects. Mycorrhiza 7:159–163

    Article  Google Scholar 

  • Likar M, Regvar M (2009) Application of temporal gradient gel electrophoresis for characterisation of fungal endophyte communities of Salix caprea L. in a heavy metal polluted soil. Sci Total Environ 407:6179–6187

    Article  CAS  PubMed  Google Scholar 

  • Likar M, Regvar M, Mandic-Mulec I, Stres B, Bothe H (2009) Diversity and seasonal variations of mycorrhiza in three common plant species at the Slovenian Ljubljana Marsh. Biol Fertil Soils 45:573–583

    Article  Google Scholar 

  • Maherali H, Klironomos JM (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    Article  CAS  PubMed  Google Scholar 

  • Martin JL (2009) Are the IUCN standard home-range thresholds for species a good indicator to prioritise conservation urgency in small islands? A case study in the Canary Islands (Spain). J Nature Conserv 17:87–98

    Article  Google Scholar 

  • Martino E, Turnau K, Girlanda M, Bonfante P, Perotto S (2000) Ericoid mycorrhizal fungi from heavy metal polluted soils: their identification and growth in the presence of zinc ions. Mycol Res 104:338–344

    Article  CAS  Google Scholar 

  • Mena-Violante HG, Ocampo-Jimenez O, Dendooven L, Martinez-Soto G, Gonzalez-Castaneda J, Davies FT, Olaide-Portugal V (2006) Arbuscular mycorrhizal fungi enhance fruit growth and quality of chile ancho (Capsicum annuum L. cv San Luis) plants exposed to drought. Mycorrhiza 16:261–267

    Article  PubMed  Google Scholar 

  • Miller RM, Jarstfer AG, Pillai JK (1987) Biomass allocation in an Agropyron smithiiGlomus symbiosis. Amer J Bot 74:114–122

    Article  Google Scholar 

  • Muthukumar T, Udaiyan K, Shanmughavel P (2004) Mycorrhiza in sedges—an overview. Mycorrhiza 14:65–77

    Article  CAS  PubMed  Google Scholar 

  • Nauenburg JD (1986) Untersuchungen zur Variabilität, Ökologie und Systematik der Viola tricolor—Gruppe in Mitteleuropa, Thesis, The University of Göttingen, Germany, 126 p

  • Neto D, Carvalho LM, Cruz C, Martins-Loução MA (2006) How do mycorrhizas affect C and N relationships in flooded Aster tripolium plants? Plant Soil 279:51–63

    Article  CAS  Google Scholar 

  • Novas MV, Iannone LJ, Godeas AM, Cabral D (2009) Positive association between mycorrhiza and foliar endophytes in Poa bonariensis, a native grass. Mycol Progr 8:75–81

    Article  Google Scholar 

  • Nuortila C, Kytöviita M-M, Tuomi J (2004) Mycorrhizal symbiosis has contrasting effects on fitness components in Campanula rotundifolia. New Phytol 164:543–553

    Article  Google Scholar 

  • Olejniczak P, Lembicz M (2007) Age-specific response of the grass Puccinellia distans to the presence of a fungal endophyte. Oecologia 152:485–494

    Article  PubMed  Google Scholar 

  • Orłowska E, Zubek S, Jurkiewicz A, Szarek-Lukaszewska G, Turnau K (2002) Influence of restoration on arbuscular mycorrhiza of Biscutella laevigata L. (Brassicaceae) and Plantago lanceolata L. (Plantaginaceae) from calamine spoil mounds. Mycorrhiza 12:153–160

    Article  PubMed  CAS  Google Scholar 

  • Orłowska E, Ryszka P, Jurkiewicz A, Turnau K (2005) Effectiveness of arbuscular mycorrhizal fungi (AMF) strains in colonization of plants involved in phytostabilization of zinc wastes. Geoderma 129:92–98

    Article  CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Rev Microbiol 6:763–775

    Article  CAS  Google Scholar 

  • Peat HJ, Fitter AH (1993) The distribution of arbuscular mycorrhizas in the British flora. New Phytol 125:845–854

    Article  Google Scholar 

  • Perry JE, Atkinson RB (2009) York river tidal marshes. J Coast Res 57:40–49

    Article  Google Scholar 

  • Pivato B, Offre B, Marchelli S, Barbouaglia B, Mougel C, Lemanceau P, Berta G (2009) Bacterial effects on arbuscular mycorrhizal fungi and mycorrhizal development as influenced by bacteria, fungi and host plants. Mycorrhiza 19:81–90

    Article  PubMed  Google Scholar 

  • Pongrac P, Vogel-Mikuš K, Kump P, Necemer M, Tolra R, Poschenrieder C et al (2007) Changes in elemental uptake and arbuscular mycorrhizal colonization during the life cycle of Thlaspi praecox Wulfen. Chemosphere 69:1602–1609

    Article  CAS  PubMed  Google Scholar 

  • Pongrac P, Sonjak S, Vogel-Mikuš K, Kump P, Nečemer M, Regvar M (2009) Roots of metal hyperaccumulating population of Thlaspi praecox (Brassicaceae) harbour arbuscular mycorrhizal and other fungi under experimental conditions. Int J Phytorem 11:347–359

    Article  CAS  Google Scholar 

  • Pringle A, Bever JD, Gardes M, Parrent JL, Rillig MC, Klironomos JN (2009) Mycorrhizal symbioses and plant invasions. Annu Rev Ecol Eol Syst 40:699–715

    Article  Google Scholar 

  • Purin S, Rillig MC (2007) The arbuscular mycorrhizal fungal protein glomalin: limitations, progress, and a new hypothesis for its function. Pedobiologia 51:123–130

    Article  CAS  Google Scholar 

  • Querejeta JI, Barea JM, Allen MF, Caravaca F, Roldan A (2003) Differential response of delta 13C and water use efficiency to arbuscular mycorrhizal infection in two aridland woody plant species. Oecologia 135:510–515

    PubMed  Google Scholar 

  • Regvar M, Vogel-Mikuš K (2008) Recent advances in understanding of plant responses to excess metals: exposure, accumulation and tolerance. In: Kahn NA, Singh S, Umar S (eds) Sulphur assimilation and abiotic stress in plants. Springer, Berlin

    Google Scholar 

  • Regvar M, Vogel K, Irgel N, Wraber T, Hildebrandt U, Wilde P, Bothe H (2003) Colonization of pennycresses Thlaspi sp. of the Brassicaceae by arbuscular mycorrhizal fungi. J Plant Physiol 160:615–626

    Article  CAS  PubMed  Google Scholar 

  • Regvar M, Vogel-Mikuš K, Kugonič N, Turk B, Batič F (2006) Vegetational and mycorrhizal successions at a metal polluted site: indications for the direction of phytostabilisation? Environ Pollut 144:976–984

    Article  CAS  PubMed  Google Scholar 

  • Reinhart KO, Packer A, Van der Putten WH, Clay K (2003) Plant–soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecol Lett 6:1046–1050

    Article  Google Scholar 

  • Rout ME, Callaway RM (2009) An invasive plant paradoxon. Science 324:734–735

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM (2003) Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New persepctives for molecular studies. Mycorrhiza 13:309–317

    Article  PubMed  Google Scholar 

  • Sala OE, Chapin FS III, Arnesto JJ, Berlow E, Bloomfield J, Dirzo R et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Schatz GE (2009) Plants on the IUCN Red List: setting priorities to inform conservation. Trends Plant Sci 14:638–642

    Article  CAS  PubMed  Google Scholar 

  • Scheloske S, Maetz M, Schneider T, Hildebrandt U, Bothe H, Povh B (2004) Element distribution in mycorrhizal and nonmycorrhizal roots of the halophyte Aster tripolium determined by proton induced X-ray emission. Protoplasma 223:183–189

    Article  CAS  PubMed  Google Scholar 

  • Scherber C, Crawley MJ, Poremski S (2003) The effect of herbivory and competition on the invasive alien plant Senecio inaequidens (Asteraceae). Divers Distrib 9:415–426

    Article  Google Scholar 

  • Schmeil O, Fitschen J (2009) Flora von Deutschland und angrenzender Länder, 94. ed. Quelle & Meyer Verlag, Wiebelsheim, Germany

  • Seddas PMA, Arias C, Arnould C, van Tuinen D, Godfroy O, Aït Benhassou H, Gouzy J, Morandi D, Dessaint F, Gianinazzi-Pearson V (2009) Symbiosis-related plant genes modulate molecular responses in an arbuscular mycorrhizal fungus during early root interactions. Mol Plant Microbe Interact 22:341–351

    Article  CAS  PubMed  Google Scholar 

  • Shah MA, Reshi ZA, Khasa D (2009) Arbuscular mycorrhizal status of some Kashmir Himalayan alien invasive plants. Mycorrhiza doi:10.1007s00572-009-0258-x

  • Sharma D, Kapoor R, Bhattnagar AK (2009) Differential growth response of Curculigo orchioides to native arbuscular mycorrhizal fungal (AMF) communities varying in number and fungal components. Eur J Soil Biol 45:328–333

    Article  Google Scholar 

  • Shumway DL, Koide RT (1994) Within-season variability in mycorrhizal benefit to reproduction in Abutilon theophrasti Medic. Plant Cell Environ 17:821–827

    Article  Google Scholar 

  • Smith AM, ap Rees T (1979) Pathways of carbohydrate fermentation in the roots of marsh plants. Planta 145:327–334

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, San Diego

    Google Scholar 

  • Smith SE, Read DJ (2007) Mycorrhizal symbiosis, 3rd edn. Academic, San Diego

    Google Scholar 

  • Smith AM, Hylton CM, Koch L, Woolhouse HW (1986) Alcohol dehydrogenase activity in the roots of marsh plants in naturally waterlogged soils. Planta 168:130–138

    Article  CAS  Google Scholar 

  • Sonjak S, Beguiristain T, Leyval C, Regvar M (2009a) Temporal temperature gradient gel electrophoresis (TTGE) analysis of arbuscular mycorrhizal fungi associated with selected plants from saline and metal polluted environments. Plant Soil 314:25–34

    Article  CAS  Google Scholar 

  • Sonjak S, Udovič M, Wraber T, Likar M, Regvar M (2009b) Diversity of halophytes and identification of arbuscular mycorrhizal fungi colonising their roots in an abandoned and sustained part of Sečovlje salterns. Soil Biol Biochem 41:1847–1856

    Article  CAS  Google Scholar 

  • Sraj-Krzic N, Pongrac P, Klemenc M, Regvar M, Gaberscik A (2006) Mycorrhizal colonisation in plants from intermittent aquatic habitats. Aquat Bot 85:333–338

    Google Scholar 

  • Sraj-Krzic N, Pongrac P, Regvar M, Gaberscik A (2009) Photon-harvesting efficiency and arbuscular mycorrhiza in amphibious plants. Photosynthetica 47:61–67

    Article  Google Scholar 

  • Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC et al (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualism. PLoS Biol 4:727–731

    Article  CAS  Google Scholar 

  • Stocker O (1928) Das Halophyten problem. Springer, Berlin

    Google Scholar 

  • Swarts ND, Dixon KW (2009) Terrestrial orchid conservation in the age of extinction. Ann Bot 143:543–556

    Article  Google Scholar 

  • Tanada A, Christensen MJ, Takemoto D, Park P, Scotta B (2006) Reactive oxygen species play a role in regulating a fungus perennial ryegrass mutualistic interaction. Plant Cell 18:1052–1066

    Article  CAS  Google Scholar 

  • Thorpe AS, Thelen GC, Diaconu A, Callaway RM (2009) Root exudate is allelopathic in invaded community but not in native community: field evidence for the novel weapons hypothesis. J Ecol 97:641–645

    Article  Google Scholar 

  • Tian CY, Feng G, Li XL, Zhang FS (2004) Different effects of arbuscular mycorrhizal fungal isolates from saline or non-saline soil on salinity tolerance of plants. Appl Soil Ecol 26:143–148

    Article  Google Scholar 

  • Tonin C, Vandenkoornhuyse P, Joner EJ, Strczek J, Leyval C (2001) Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover. Mycorrhiza 10:161–168

    Article  CAS  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d'un systėme radiculaire. Recherche de methodes d'estimation ayant une signification fonctionelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Services des Publications, Versailles, pp 217–221

  • Turnau K (1991) The influence of cadmium dust on fungi in a Pino-Quercetum forest—a summary. Ekol Pol 39:39–57

    CAS  Google Scholar 

  • Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190

    Article  PubMed  Google Scholar 

  • Turnau K, Miszalski Z, Trouvelot A, Bonfante P, Gianinazzi S (1996). Oxalis acetosella as a monitoring plant on highly polluted soils. Proceedings of the Mycorrhizal Conference in Granada, abstract book, pp 483–486

  • Turnau K, Ronikier M, Unrug J (1999) Role of mycorrhizal links between plants in establishment of liverworts thalli in natural habitats. Acta Soc Bot Pol 68:63–68

    Google Scholar 

  • Turnau K, Anielska T, Jurkiewicz A (2005) Mycothallic/mycorrhizal symbiosis of chlorophyllous gametophytes and sporophytes of a fern, Pellaea viridis (Forsk.) Prantl (Pellaeaceae, Pteridales). Mycorrhiza 15:121–128

    Article  CAS  PubMed  Google Scholar 

  • Turnau K, Henriques FS, Anielska T, Renker C, Buscot F (2007) Metal uptake and detoxification mechanisms in Erica andevalensis growing in a pyrite mine tailing. Environ Exper Bot 61:117–123

    Article  CAS  Google Scholar 

  • Tylianakis JM, Didham RM, Bascompte J, Wardle DA (2008) Global changes and species interactions in terrestrial ecosystems. Ecol Lett 11:1351–1363

    Article  PubMed  Google Scholar 

  • Unrug J, Turnau K (1999) Mycorrhiza of Dryopteris carthusiana in southern Poland. Acta Mycol 34:305–314

    Google Scholar 

  • Van der Heijden MAG, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Van der Hejden MGA, Bardgett RD, Van Staalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  Google Scholar 

  • Vierheilig H, Iseli B, Alt M, Raikhel N, Wiemken A, Boller T (2006) Resistance of Urtica dioica to mycorrhizal colonization: a possible involvement of Urtica dioica agglutinin. Plant Soil 183:131–136

    Article  Google Scholar 

  • Vogel-Mikuš K, Pongrac C, Pellicon P, Vavpetič P, Povh B, Bothe H, Regvar M (2009) Micro-PIXE analysis for localization and quantification of elements in roots of mycorrhizal metal-tolerant plants. In: Varma A, Kharkwal AC (eds) Symbiotic fungi: principles and practice, Soil Biology Series vol 18. Springer Heidelberg, Berlin, pp 227–242

    Google Scholar 

  • Vosátka M, Dodd JC (2002) Ecological considerations for successful application of arbuscular mcorrhizal fungi inoculum. In: Gianinazzi S, Schuëpp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture: from genes to mycorrhiza application. Birkhäuser, Basel, pp 235–247

    Google Scholar 

  • Wang B, Qiu Y-L (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–366

    Article  CAS  PubMed  Google Scholar 

  • Wardle DA, Bardgett RD, Klironomos JM, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633

    Article  CAS  PubMed  Google Scholar 

  • Weir T (2007) The role of allelopathy and mycorrhizal asociations in biological invasions. Allelopathy J 20:43–50

    Google Scholar 

  • Weir T, Park S-W, Vivanco J (2004) Biochemical and physiological mechanisms mediated by allelochemicals. Curr Opin Plant Biol 7:472–479

    Article  CAS  PubMed  Google Scholar 

  • Weishampel PA, Bedford BL (2006) Wetland dicots and monocots differ in colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 16:495–502

    Article  PubMed  Google Scholar 

  • Weissenhorn I, Leyval C (1993) Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy-metal polluted soils. Plant Soil 157:247–256

    Article  CAS  Google Scholar 

  • Werner D (1992) Symbioses of plants and microbes. Kluwer Academic Publishers, 400p

  • Werner DJ (2002) Neue Aspekte und Daten zu Herkunft, Ausbreitung, Ökologie und Vergesellschaftung von Senecio inaequidens DC. Flora Colonia 8, ISSN 0177-9613

  • Wilde P, Manal A, Stodden M, Sieverding E, Hildebrandt U, Bothe H (2009) Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environ Microb 11:1548–1561

    Article  Google Scholar 

  • Wilsey BJ, Teaschner TB, Daneshgar PP, Isbell FI, Polley AW (2009) Biodiversity maintenance mechanisms differ between native and novel exotic-dominated communities. Ecol Lett 12:432–442

    Article  PubMed  Google Scholar 

  • Wirsel SGR (2004) Homogenous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. FEMS Microb Ecol 48:129–138

    Article  CAS  Google Scholar 

  • Witte L, Ehmke A, Hartmann T (1990) Interspecific flow of pyrrolizidine alkaloids: from plants via aphids to ladybirds. Naturwissensch 77:540–543

    Article  CAS  Google Scholar 

  • Wolfe BE, Klironomos JM (2005) Breaking new ground: soil communities and exotic plant invasion. Bioscience 55:477–487

    Article  Google Scholar 

  • Wolfe BE, Weishampel PA, Klironomos JM (2006) Arbuscular mycorrhizal fungi and water table affect wetland plant community composition. J Ecol 94:905–914

    Article  Google Scholar 

  • Wolfe BE, Mummey DL, Rillig MC, Klironomos JM (2007) Small-scale heterogeneity of arbuscular mycorrhizal fuangal abundance and community composition in a wetland plant community. Mycorrhiza 17:175–183

    Article  PubMed  Google Scholar 

  • Wu Q, Xia R (2005) Effects of AM fungi on drought tolerance of citrus grafting seedlings trifoliare orange/cara cara. Ying Yong Sheng Tai Xue Bao 16:865–869

    PubMed  Google Scholar 

  • Zubek S, Turnau K, Blaszkowski J (2008) Arbuscular mycorrhiza of endemic and endangered plants from the Tatra Mts. Acta Societ Botanic Polon 77:149–156

    Google Scholar 

  • Zubek S, Turnau K, Tsimilli-Michael M, Strasser JR (2009) Response of endangered plant species to inoculation with arbuscular mycorrhizal fungi and soil bacteria. Mycorrhiza 19:113–123

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are indebted to Dr. M. Geoffrey Yates, Lewes, Sussex, Professor Douglas Zook, Boston University, USA, and reviewers for helpful comments and for improving the English of the manuscript. MR acknowledges the support of the Slovenian research program ARRS P1-0212 “Biology of Plants”. KT was supported by project 197/N-COST/2008/0 financed by the Polish Ministry of Science and Higher Education. Meetings of several COST Actions: 838, 856, 859, and 870 gave valuable inputs for this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Bothe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1

(DOC 2,630 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bothe, H., Turnau, K. & Regvar, M. The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza 20, 445–457 (2010). https://doi.org/10.1007/s00572-010-0332-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-010-0332-4

Keywords

Profiles

  1. Katarzyna Turnau