Abstract
Individuals of Inula ensifolia L. (Asteraceae), a valuable xerothermic plant species with potential therapeutic value, were inoculated under laboratory conditions with different strains of arbuscular mycorrhizal fungi (AMF): (1) Glomus intraradices UNIJAG PL-Bot, (2) G. intraradices UNIJAG PL-Kap, (3) Glomus clarum UNIJAG PL13-2, and (4) AMF crude inoculum from natural stands of I. ensifolia. We found AMF species specificity in the stimulation of thymol derivative production in the roots of I. ensifolia. There was an increase in thymol derivative contents in roots after G. clarum inoculation and at the same time the decreased production of these metabolites in the G. intraradices treatments. Moreover, no correlation between the extent of AMF colonization and the effects of the fungal symbionts on the plant was observed. A multilevel analysis of chlorophyll a fluorescence transients (JIP test) permitted an evaluation of plant vitality, expressed in photosynthetic performance index, influenced by the applied AMF strains, which was found to be in good agreement with the results concerning thymol derivative production. The mechanisms by which AMF trigger changes in phytochemical concentration in plant tissues and their consequences for practice are discussed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abu-Zeyad R, Khan AG, Khoo C (1999) Occurrence of arbuscular mycorrhiza in Castanospermum australe A. Cunn. & C. Fraser and effects on growth and production of castanospermine. Mycorrhiza 9:111–117
Akiyama K, Hayashi H (2002) Arbuscular mycorrhizal fungus-promoted accumulation of two new triterpenoids in cucumber roots. Biosci Biotechnol Biochem 66:762–769
Biró B, Köves-Péchy K, Tsimilli-Michael M, Strasser RJ (2006) Role of beneficial microsymbionts on the plant performance and plant fitness. In: Mukerji KG, Manoharachary C, Singh J (eds) Microbial activity in the rhizosphere, vol 7, Soil biology series (Varma A—series editor). Springer-Verlag, Berlin, pp 265–296
Copetta A, Lingua G, Berta G (2006) Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16:485–494
Dzwonko Z, Loster S (2008) Changes in plant species composition in abandoned and restored limestone grasslands—the effect of tree and shrub cutting. Acta Soc Bot Pol 77(1):67–75
Feldmann F, Hallmann J, Wagner S, Long X-Q, Schneider C, Hutter I, Ceipek B, Fan J, Zheng X, Wang C, Feng G (2008) Mycorrhizal fungi as biological components of integrated cucumber production (BIOMYC)-promising results for mycorrhizal technology transfer to horticultural practice. In: Feldmann F, Kapulnik Y, Baar J (eds) Mycorrhiza works. Deutsche Phytomedizinische Gesellschaft Braunschweig, Germany, pp 25–38. ISBN 978-3-941261-01-3
Feldmann F, Gillessen M, Hutter I, Schneider C (2009) Should we breed for effective mycorrhiza symbioses? In: Feldmann F, Alford DV, Furk C (eds) Crop plant resistance to biotic and abiotic factors. Current potential and future demands. Deutsche Phytomedizinische Gesellschaft Braunschweig, Germany, pp 507–522. ISBN 978-3-941261-05-1
Fester T, Maier W, Strack D (1999) Accumulation of secondary compounds in barley and wheat roots in response to inoculation with an arbuscular mycorrhizal fungus and co-inoculation with rhizosphere bacteria. Mycorrhiza 8:241–246
Fester T, Schmidt D, Lohse S, Walter MH, Giuliano G, Bramley PM, Fraser PD, Hause B, Strack D (2002) Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots. Planta 216:148–154
Gemma JN, Koske RE, Habte M (2002) Mycorrhizal dependency of some endemic and endangered Hawaiian plant species. Am J Bot 89(2):337–345
Graham JH, Eissenstat DM, Drouillard DL (1991) On the relationship between a plant's mycorrhizal dependency and rate of vesicular-arbuscular mycorrhizal colonization. Funct Ecol 5:773–779
Hamel C (1996) Prospects and problems pertaining to the management of arbuscular mycorrhizae in agriculture. Agr Ecosyst Environ 60:197–210
Jurkiewicz A, Ryszka P, Anielska T, Waligórski P, Białońska D, Góralska K, Tsimilli-Michael M, Turnau K (2010) Optimization of culture conditions of Arnica montana L.: effects of mycorrhizal fungi and competing plants. Mycorrhiza doi:10.1007/s00572-009-0280-z
Kapoor R, Giri B, Mukerji KG (2002a) Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World J Microbiol Biotechnol 18:459–463
Kapoor R, Giri B, Mukerji KG (2002b) Mycorrhization of coriander (Coriandrum sativum L.) to enhance the concentration and quality of essential oil. J Sci Food Agr 82:339–342
Kapoor R, Chaudhary V, Bhatnagar AK (2007) Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza 17:581–587
Khaosaad T, Vierheilig H, Nell M, Zitterl-Eglseer K, Novak J (2006) Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza 16:443–446
Larose G, Chênevert R, Moutoglis P, Gagné S, Piché Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339
Morandi D (1996) Occurrence of phytoalexins and phenolic compounds in endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251
Orłowska E, Ryszka P, Jurkiewicz A, Turnau K (2005) Effectiveness of arbuscular mycorrhizal fungal (AMF) strains in colonization of plants involved in phytostabilisation of zinc wastes. Geoderma 129:92–98
Perzanowska J, Grzegorczyk M (2009) Obszary Natura 2000 w Małopolsce (Natura 2000 network in Małopolska province). Instytut Ochrony Przyrody, Polska Akademia Nauk, Kraków, ISBN: 978-83-61191-16-2 (in Polish)
Phillips J, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc 55:158–161
Pinior A, Grunewaldt-Stöcker G, von Alten H, Strasser RJ (2005) Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyl a fluorescence, proline content and visual scoring. Mycorrhiza 15:596–605
Réthy B, Csupor-Löffler B, Zupkó I, Hajdú Z, Máthé I, Hohmann J, Rédei T, Falkay G (2007) Antiproliferative activity of Hungarian Asteraceae species against human cancer cell lines. Part I. Phytother Res 21:1200–1208
Rojas-Andrade R, Cerda-Garcia-Rojas CM, Frias-Hernández JT, Dendooven L, Olalde-Portugal V, Ramos-Valdivia AC (2003) Changes in the concentration of trigonelline in a semi-arid leguminous plant (Prosopis laevigata) induced by an arbuscular mycorrhizal fungus during the presymbiotic phase. Mycorrhiza 13:49–52
Shimoda K, Kondo Y, Nishida T, Hamada H, Nakajima N, Hamada H (2006) Biotransformation of thymol, carvacrol, and eugenol by cultured cells of Eucalyptus perriniana. Phytochemistry 67:2256–2261
Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London. ISBN 13: 978-0-1237-0526-6
Stojakowska A, Kędzia B, Kisiel W (2005) Antimicrobial activity of 10-isobutyryloxy-8, 9-epoxythymol isobutyrate. Fitoterapia 76:687–690
Stojakowska A, Michalska K, Malarz J (2006) Simultaneous quantification of eudesmanolides and thymol derivatives from tissues of Inula helenium and I. royleana by reversed-phase high-performance liquid chromatography. Phytochem Anal 17:157–161
Stojakowska A, Malarz J, Zubek S, Turnau K, Kisiel W (2010) Terpenoids and phenolics from Inula ensifolia. Biochem Syst Ecol. doi:10.1016/j.bse.2009.12.011
Strack D, Fester T, Hause B, Schliemann W, Walter MH (2003) Arbuscular mycorrhiza: biological, chemical and molecular aspects. J Chem Ecol 29:1955–1979
Strasser RJ, Srivastava A, Tsimilli-Michael M (2000) The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Yunus M (ed) Probing photosynthesis: mechanisms, regulation and adaptation. Taylor and Francis, London, pp 445–483
Strasser RJ, Tsimilli-Michael M, Srivastava A (2004) Analysis of the chlorophyll a fluorescence transient. In: Papageorgiou GC, Govindjee C (eds) Chlorophyll a fluorescence: a signature of photosynthesis, vol 19, Advances in photosynthesis and respiration series (Govindjee—Series Editor). Kluwer Academic Publishers, Rotterdam, pp 321–362
Strasser RJ, Tsimilli-Michael M, Dangre D, Rai M (2007) Biophysical phenomics reveals functional building blocks of plants systems biology: a case study for the evaluation of the impact of mycorrhization with Piriformospora indica. In: Varma A, Oelmuller R (eds) Advanced techniques in soil biology, Soil biology series. Springer, Germany, pp 220–221
Toussaint JP (2007) Investigating physiological changes in the aerial parts of AM plants: what do we know and where should we be heading? Mycorrhiza 17:349–353
Toussaint JP, Smith FA, Smith SE (2007) Arbuscular mycorrhizal fungi can induce the production of phytochemicals in sweet basil irrespective of phosphorus nutrition. Mycorrhiza 17:291–297
Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d'un systeme radiculaire. Recherche de methodes d'estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 217–221
Tsimilli-Michael M, Strasser RJ (2008) In vivo assessment of plants' vitality: applications in detecting and evaluating the impact of mycorrhization on host plants. In: Varma A (ed) Mycorrhiza: state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics, 3rd edn. Springer, Dordrecht, pp 679–703
Tsimilli-Michael M, Eggenberg P, Biró B, Köves-Pechy K, Vörös I, Strasser RJ (2000) Synergistic and antagonistic effects of arbuscular mycorrhizal fungi and Azospirillum and Rhizobium nitrogen-fixers on the photosynthetic activity of alfalfa, probed by the polyphasic chlorophyll a fluorescence transient O-J-I-P. Appl Soil Ecol 15:169–182
Turnau K, Haselwandter K (2002) Arbuscular mycorrhizal fungi, an essential component of soil microflora in ecosystem restoration. In: Gianinazzi S, Schűepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. From genes to mycorrhiza application. Birkhauser Verlag, Switzerland, pp 137–149
Vierheilig H, Bennett R, Kiddle G, Kaldorf M, Ludwig-Müller J (2000) Differences in glucosinolate patterns and arbuscular mycorrhizal status of glucosinolate-containing plant species. New Phytol 146:343–352
Zubek S, Błaszkowski J (2009) Medicinal plants as hosts of arbuscular mycorrhizal fungi and dark septate endophytes. Phytochem Rev 8:571–580
Zubek S, Turnau K, Błaszkowski J (2008) Arbuscular mycorrhiza of endemic and endangered plants from the Tatra Mts. Acta Soc Bot Pol 77(2):149–156
Zubek S, Turnau K, Tsimilli-Michael M, Strasser RJ (2009) Response of endangered plant species to inoculation with arbuscular mycorrhizal fungi and soil bacteria. Mycorrhiza 19:113–123
Acknowledgements
We are grateful to Prof. S. Loster (Institute of Botany, Jagiellonian University, Kraków) for providing us with the useful information concerning I. ensifolia. M.Sc. Eng. B. Szczepanowicz (Institute of Botany, Jagiellonian University) is acknowledged for her assistance during the soil samples analysis. The present research was financially supported by the Polish Ministry of Science and Higher Education (project no. 197/N-COST/2008/0).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zubek, S., Stojakowska, A., Anielska, T. et al. Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L.. Mycorrhiza 20, 497–504 (2010). https://doi.org/10.1007/s00572-010-0306-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00572-010-0306-6