Skip to main content
Log in

Morphological and molecular analyses in Scleroderma species associated with some Caesalpinioid legumes, Dipterocarpaceae and Phyllanthaceae trees in southern Burkina Faso

  • Review
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

A combination of morphotypes, polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analyses and internal transcribed spacer (ITS) sequencing was used to investigate Scleroderma species that were collected from woodlands in Burkina Faso. We harvested 52 specimens from 20 sites during rainy seasons between 1997 and 2000. According to their morphological features, these specimens were initially characterised, and we then identified six species of Scleroderma. Two of the species were clearly determined as Scleroderma dictyosporum Pat. and S. verrucosum Pers. The four remaining species were characteristically described as (1) displaying big spores with spines up to 2 µm (Scleroderma sp1), (2) producing spores without ornamentation (Scleroderma sp2), (3) spores with very small spines (Scleroderma sp3) and (4) with yellow sporocarps and sub-spherical spores (Scleroderma sp4). The specimens were then analysed using PCR/RFLP of the intergenic regions of rDNA, ITS and IGS1 and ITS sequencing. The restriction fragments obtained with two endonucleases, HinfI and MboI on ITS and IGS1 regions, showed that some isolates of S. dictyosporum had the same patterns as isolates and basidiocarps of Scleroderma sp4 (IR265, IR408, SP4-2903). Isolates of Scleroderma sp3 (IR252) had common restriction fragments as isolates of S. verrucosum (IR500, IR600). Intraspecific differences were observed in the two previously determined species, as well as in Scleroderma sp2. The ITS sequencing and phylogenetic analyses showed that the ribotypes identified by PCR/RFLP within these species might be phylogenetic species. Combining these molecular results allowed regrouping the six morphological species in three sets of cryptic species: a first set with two species including S. dictyosporum Pat., a second set with four species, including both S. verrucosum Pers. and Scleroderma sp1 and a third set with two species, including Scleroderma sp2. These investigations and the combined morphological and molecular analyses used to sort out species paved the way for identifying larger populations of Scleroderma species in Burkina Faso and other tropical zones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bâ AM (1990) Contribution à l'étude de la symbiose ectomycorhizienne chez deux essences forestières d'Afrique intertropicale : Afzelia africana Sm. et Uapaca guineensis Müll. Arg. Thèse de l'Université des Sciences et Techniques du Languedoc, Montpellier, p 193

    Google Scholar 

  • Bâ AM, Thoen D (1990) First syntheses of ectomycorrhizas between Afzelia africana Sm. (Caesalpinioideae) and native fungi from West Africa. New Phytol 103:441–448

    Google Scholar 

  • Bâ AM, Sanon KB, Duponnois R, Dexheimer J (1999) Growth responses of Afzelia africana Sm seedlings to ectomycorrhizal inoculation in nutrient-deficient soil. Mycorrhiza 9:91–95

    Article  Google Scholar 

  • Bâ AM, Sanon KB, Duponnois R (2002) Influence of ectomycorrhizal inoculation on Afzelia quanzensis welw. seedlings in a nutrient-deficient soil. For Ecol Manag 161:215–219

    Article  Google Scholar 

  • Brock PM, Doring H, Bidartondo MI (2009) How to know unknown fungi: the role of a herbarium. New Phytol 181(3):719–724

    Article  PubMed  Google Scholar 

  • Bruns TD, Szaro TM, Gardes M, Cullings KW, Pan JJ, Taylor DL, Horton TR, Kretzer A, Garbelotto M, Li Y (1998) A sequence database for the identification of ectomycorrhizal basidiomycetes by phylogenetic analysis. Mol Ecol 7:257–272

    Article  CAS  Google Scholar 

  • Chen YG (2006) Optimisation of Scleroderma spores inoculum for eucalyptus nurseries in China. Biological science, Murdoch University. Perth-Western, Australia, p 201

    Google Scholar 

  • Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890

    Article  PubMed  CAS  Google Scholar 

  • David JF, David MS (1998) Variation in the ribosomal DNA internal transcribed spacer of a diverse collection of ectomycorrhizal fungi. Mycol Res 102(7):859–865

    Article  Google Scholar 

  • Dell B, Malajczuk N, Dunstan WA (2002) Persistance of some Australian Pisolithus species introduced into eucalypt plantations in China. For Ecol Manag 169:271–281

    Article  Google Scholar 

  • Di Battista C, Sélosse MA, Bouchard D, Stenström E, Le Tacon F (1996) Variations in symbiotic efficiency, phenotypic characters and ploidy level among different isolates of the ectomycorrhizal basidiomycete Laccaria bicolor strain S 238. Mycol Res 100:1315–1324

    Article  Google Scholar 

  • Diédhiou AG, Guèye O, Diabaté M, Prin Y, Duponnois R, Dreyfus B, Bâ AM (2005) Contrasting responses to ectomycorrhizal inoculation in seedlings of six tropical African tree species. Mycorrhiza 16:11–17

    Article  PubMed  Google Scholar 

  • Erland S, Henrion B, Martin F, Glover LA, Alexander IJ (1994) Identification of the ectomycorrhizal basidiomycete Tylospora fibrillosa Donk by RFLP analysis of the PCR-amplified ITS and IGS regions of ribosomal DNA. New Phytol 126:525–532

    Article  CAS  Google Scholar 

  • Frank JL (2006) Mammal mycophagy and dispersal of mycorrhizal inoculum in Oregon white oak woodlands. Northwest Sci. 80:264–273

    Google Scholar 

  • Gardes M, White TJ, Fortin JA, Bruns TD, Taylor JW (1991) Identification of indigenous and introduced symbiotic fungi in ectomycorrhizae by amplification of nuclear and mitochondrial ribosomal DNA. Can J Bot 69:180–190

    CAS  Google Scholar 

  • Gomes EA, Kasuya MCM, de Barros EG, Borges AC, Araujo EF (2002) Polymorphism in the internal transcribed spacer (ITS) of the ribosomal DNA of 26 isolates of ectomycorrhizal fungi. Genetics and Mol Biol 25(4):477–483

    CAS  Google Scholar 

  • Grube M, Depriest PT, Gargas A, Hafellner J (1995) DNA isolation from lichen ascomata. Mycol Res 99:1321–1324

    Article  CAS  Google Scholar 

  • Guzman G, Ramirez-Guillém F, Miller OK, Lodge DJ (2004) Scleroderma stellatum versus Scleroderma bermudense: the status of Scleroderma echinatum and the first record of Veligaster nitidum from the Virgin Islands. Mycologia 96:1370–1379

    Article  Google Scholar 

  • Hansen K, Laessoe T, Pfister D (2002) Phylogenetic diversity in the core group of Peziza inferred from ITS sequences and morphology. Mycol Res 106(8):879–902

    Article  CAS  Google Scholar 

  • Henrion B, Le Tacon F, Martin F (1992) Rapid identification of genetic variation of ectomycorrhizal fungi by amplification of ribosomal RNA genes. New Phytol 122:289–298

    Article  CAS  Google Scholar 

  • Hong SH, Jeong W, Jung HS (2002) Amplification of mitochondrial small subunit ribosomal DNA of polypores and its potential for phylogenetic analysis. Mycologia 94(5):823–833

    Article  CAS  Google Scholar 

  • Horton T (2002) Molecular approaches to ectomycorrhizal diversity studies: variation in ITS at a local scale. Plant Soil 244:29–39

    Article  CAS  Google Scholar 

  • James TY, Monclavo J-M, Li S, Vilgalys R (2001) Polymorphism at the ribosomal DNA spacers an it relation to breeding structure of the widespread mushroom Schizophyllum commune. Genetics 157:149–161

    PubMed  CAS  Google Scholar 

  • Karen O, Högberg N, Dahlberg A, Jonsson L, Nylund JE (1997) Inter- and intraspecific variation in the ITS region of rDNA of ectomycorrhizal fungi in Fennoscandia as detected by endonuclease analysis. New Phytol 136:313–325

    Article  CAS  Google Scholar 

  • Kim M-S, Klopfenstein NB, Hanna JW, McDonald GI (2006) Characterisation of North American Armillaria species: genetic relationships determined by ribosomal DNA sequences and AFLP markers. For Path 36:145–164

    Article  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Kuo M (2004) The genus Scleroderma. Retrieved from the MushroomExpert.Com Web site: http://www.mushroomexpert.com/scleroderma.html. December 6, 2007

  • Liang Y, Guo L-D, Ma K-P (2004) Genetic structure of a population of the ectomycorrhizal fungus Russula vinosa in subtropical woodlands in southwest China. Mycorrhiza 14:235–240

    Article  PubMed  CAS  Google Scholar 

  • Lindemuth R, Wirtz N, Lumbsch HT (2001) Phylogenetic analysis of nuclear and mitochondrial rDNA sequences supports the view that loculoascomycetes (Ascomycota) are not monophyletic. Mycol Res 105(10):1176–1181

    Article  CAS  Google Scholar 

  • Martin F, Voiblet C (1998) Large-scale sequencing of anonymous ectomycorrhiza cDNA clones. In: Varma A (ed) Mycorrhiza manual. Springer Verlag, Berlin Heidelberg, New York, pp 475–493

    Google Scholar 

  • Martin F, Costa G, Delaruelle C, Diez J (1997) Genomic fingerprinting of ectomycorrhizal fungi by microsatellite-primed PCR. In: Varma A, Hock B (eds) Mycorrhiza manual. Springer Lab Manuel Berlin, Springer-Verlag, pp 463–474

    Google Scholar 

  • Martin F, Delaruelle C, Ivory M (1998) Genetic variability in intergenic spacers of ribosomal DNA in Pisolithus isolates associated with pine, eucalyptus and Afzelia in lowland Kenyan Forest. New Phytol 139:341–352

    Article  CAS  Google Scholar 

  • Martin F, Diez J, Dell B, Delaruelle C (2002) Phylogeography of the ectomycorrhizal Pisolithus species as inferred from the nuclear ribosomal DNA ITS sequences. New Phytol 153(2):345–358

    Article  CAS  Google Scholar 

  • Marx DH (1969) The influence of ectotropic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163

    Google Scholar 

  • Matsushita N, Kikuchi K, Sasaki Y, Guerin-Laguette A, Lapeyrie F, Vaario L-M, Intini M, Suzuki K (2005) Genetic relationship of Tricholoma matsutake and T. nauseosum from the Northern Hemisphere based on analyses of ribosomal DNA spacer regions. Mycoscience 46:90–96

    Article  CAS  Google Scholar 

  • Munyanziza E, Kuyper TW (1995) Ectomycorrhizal synthesis on seedlings of Afzelia quanzensis Welw. using various types of inoculum. Mycorrhiza 5:283–287

    Google Scholar 

  • Nara K (2006) Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol 169(1):169–178

    Article  PubMed  CAS  Google Scholar 

  • Palmer JM, Lindner DL, Volk TJ (2008) Ectomycorrhizal characterization of an American chestnut (Castanea dentata)-dominated community in Western Wisconsin. Mycorrhiza 19(1):27–36

    Article  PubMed  Google Scholar 

  • Peay KG, Garbelotto M, Bruns TD (2009) Spore heat resistance plays an important role in disturbance mediated assemblage shift of ectomycorrhizal fungi colonizing Pinus muricata seedlings. J Ecol 97:537–547

    Article  Google Scholar 

  • Peter M, Büchler U, Ayer F, Egli S (2001) Ectomycorrhizas and molecular phylogeny of the hypogeous russuloid fungus Arcangeliella borziana. Mycol Res 105(10):1231–1238

    Article  CAS  Google Scholar 

  • Phosri C, Martin MP, Sihanonth P, Whalley AJ, Watling R (2007) Molecular study of the genus Astraeus. Mycol Res 111(PT 3):275–286

    Article  PubMed  CAS  Google Scholar 

  • Rivière T, Diedhiou AG, Diabaté M, Senthilarasu G, Natarajan K, Ducousso M, Verbeken A, Buyck B, Dreyfus B, Bena G, Bâ AM (2007) Diversity of ectomycorrhizal Basidiomycetes in West African and Indian tropical rain forests. Mycorrhiza 17:415–428

    Article  PubMed  Google Scholar 

  • Ruiz-Diez B, Rincon AM, de Felipe MR, Fernandez-Pascual M (2006) Molecular characterisation and evaluation of mycorrhizal capacity of Suillus isolates from Central Spain for the selection of fungal inoculants. Mycorrhiza 16:465–474

    Article  PubMed  CAS  Google Scholar 

  • Sanon BK (1999) La symbiose ectomycorhizienne chez quelques Césalpiniacées et Euphorbiacées des forêts du Sud-Ouest du Burkina Faso. Etude morphologique et cytologique, mycorrhization contrôlée et étude de la diversité inter- et intraspécifique de Sclérodermes ectomycorhiziens. Thèse de Doctorat de l’Université Henri Poincaré Nancy I, 119p

  • Sanon KB, Bâ AM, Dexheimer J (1997) Mycorrhizal status of some fungi fruiting beneath indigenous trees in Burkina Faso. For Ecol Manag 98:61–69

    Article  Google Scholar 

  • Sha T, Zhang H, Ding H, Li Z, Cheng L, Zhao Z, Zhang Y (2007) Genetic diversity of Tricholoma matsutake in Yunnan Province. Chin Sci Bull 52(9):1212–1216

    Article  CAS  Google Scholar 

  • Sica M, Gaudio L, Aceto S (2007) Genetic structure of Tuber mesentericum Vitt. Based on polymorphism at the ribosomal DNA ITS. Mycorrhiza 17:405–414

    Article  PubMed  CAS  Google Scholar 

  • Sims KP, Watling R, Jeffries P (1995) A revised key to the genus Scleroderma. Mycotaxon LVI:403–420

    Google Scholar 

  • Sims K, Watling R, De LA Cruz R, Jeffries P (1997) Ectomycorrhizal fungi of the Philippines: a preliminary survey and notes on the geographic biodiversity of the Sclerodermatales. Biodivers Conserv 6:45–58

    Article  Google Scholar 

  • Sims PK, Sen R, Watling R, Jeffries P (1999) Species and populations structures of PisolithusScleroderma identified by combined phenotypic and genomic marker analysis. Mycol Res 103(4):449–458

    Article  Google Scholar 

  • Tedersoo L, Suvi T, Beaver K, Kôljalg U (2007) Ectomycorrhizal fungi of the Seychelles: diversity patterns and host shifts from the native Vateriopsis seychellarum (Dipterocarpaceae) and Intsia bijuga (Caesalpiniaceae) to the introduced Eucalyptus robusta (Myrtaceae), but not Pinus caribea (Pinaceae). New Phytol 175:321–333

    Article  PubMed  CAS  Google Scholar 

  • Thoen D, Bâ AM (1989) Ectomycorrhizas and putative ectomycorrhizal fungi of Afzelia africana Sm. and Uapaca guineensis Müll. Arg. in southern Senegal. New Phytol 113:549–559

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, San Diego, pp 315–322

    Google Scholar 

  • Zhang J, Huang C, Ng BT, Wang H (2006) Genetic polymorphism of ferula mushroom growing on Ferula sinkiangensis. Appl Microbiol Biotech 71:304–309

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the International Foundation for Science (IFS, Sweden) and the Committee on Science and Technological Cooperation (COMSTECH, Islamabad–Pakistan) for their financial assistance trough the grant to Dr. Sanon B.K. (D\2164-2). We thank Dr. M. Sacande for the English revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadidia B. Sanon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanon, K.B., Bâ, A.M., Delaruelle, C. et al. Morphological and molecular analyses in Scleroderma species associated with some Caesalpinioid legumes, Dipterocarpaceae and Phyllanthaceae trees in southern Burkina Faso. Mycorrhiza 19, 571–584 (2009). https://doi.org/10.1007/s00572-009-0272-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-009-0272-z

Keywords

Navigation