Skip to main content
Log in

Impact of antifungals producing rhizobacteria on the performance of Vigna radiata in the presence of arbuscular mycorrhizal fungi

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Plant growth-promoting rhizobacteria (PGPR) that produce antifungal metabolites are potential threats for the arbuscular mycorrhizal (AM) fungi known for their beneficial symbiosis with plants that is crucially important for low-input sustainable agriculture. To address this issue, we used a compartmented container system where test plants, Vigna radiata, could only reach a separate nutrient-rich compartment indirectly via the hyphae of AM fungi associated with their roots. In this system, where plants depended on nutrient uptake via AM symbiosis, we explored the impact of various PGPR. Plants were inoculated with or without a consortium of four species of AM fungi (Glomus coronatum, Glomus etunicatum, Glomus constrictum, and Glomus intraradices), and one or more of the following PGPR strains: phenazine producing (P+) and phenazine-less mutant (P), diacetylphloroglucinol (DAPG) producing (G+) and DAPG-less mutant (G) strains of Pseudomonas fluorescens, and an unknown antifungal metabolite-producing Alcaligenes faecalis strain, SLHRE425 (D). PGPR exerted only a small if any effect on the performance of AM symbiosis. G+ enhanced AM root colonization and had positive effects on shoot growth and nitrogen content when added alone, but not in combination with P+. D negatively influenced AM root colonization, but did not affect nutrient acquisition. Principal component analysis of all treatments indicated correlation between root weight, shoot weight, and nutrient uptake by AM fungus. The results indicate that antifungal metabolites producing PGPR do not necessarily interfere with AM symbiosis and may even promote it thus carefully chosen combinations of such bioinoculants could lead to better plant growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akköprü A, Demir S (2005) Biological control of Fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J Phytopathol 153:544–550. doi:10.1111/j.1439-0434.2005.01018.x

    Article  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10. doi:10.1111/j.1462-2920.2005.00942.x

    Article  PubMed  CAS  Google Scholar 

  • Azcón R, Barea JM, Hayman DS (1976) Utilization of rock phosphate in alkaline soils by plants inoculated with mycorrhizal fungi and phosphate solubilizing bacteria. Soil Biol Biochem 8:135–138. doi:10.1016/0038-0717(76)90078-X

    Article  Google Scholar 

  • Azcón-Aguillar C, Barea JM (1995) Saprophytic growth of arbuscular–mycorrhizal fungi and other rhizospheric microorganisms. In: Allen MJ (ed) Mycorrhizal functioning: an integrative plant fungal process. Chapman and Hall, New York, N.Y, pp 163–198

    Google Scholar 

  • Barea JM, Jeffries P (1995) Arbuscular mycorrhiza in sustainable soil plant systems. In: Hock B, Varma A (eds) Mycorrhiza structure, function, molecular biology and biotechnology. Springer, Heidelberg, pp 521–559

    Google Scholar 

  • Barea JM, Andrade G, Bianciotto D, Lohrke S, Bonfante P, O`Gara F, Azcon-Aguillar C (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64:2304–2307

    PubMed  CAS  Google Scholar 

  • Barea JM, Azcon R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Anton Leeuw Int J G 81:343–351. doi:10.1023/A:1020588701325

    Article  CAS  Google Scholar 

  • Boronin AM, Thomashow LS (1998) A seven gene locus for synthesis of phenazine-1-carboxylic acid by Pseudomonas fluorescens 2–79. J Bacteriol 180:2541–2548

    PubMed  Google Scholar 

  • Bowen GD, Theodorou C (1979) Interactions between bacteria and ectomycorrhizal fungi. Soil Biol Biochem 11:119–126. doi:10.1016/0038-0717(79)90087-7

    Article  Google Scholar 

  • Budi SW, van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soilborne fungal pathogens. Appl Environ Microbiol 65:5148–5150

    PubMed  CAS  Google Scholar 

  • Bull CT, Weller DM, Thomashow LS (1991) Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2–79. Phytopathology 81:954–959. doi:10.1094/Phyto-81-954

    Article  Google Scholar 

  • Duponnois R, Plenchett C (2003) A mycorrhizal bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species. Mycorrhiza 13:85–91

    PubMed  CAS  Google Scholar 

  • Dwivedi D, Johri BN (2003) Antifungals from fluorescent pseudomonads: biosynthesis and regulation. Curr Sci 85:1693–1703

    CAS  Google Scholar 

  • Ebel RC, Welbaum GE, Gunatilaka M, Nelson T, Auge RM (1996) Arbuscular mycorrhizal symbiosis and nonhydraulic signalling of soil drying in Vigna unguiculata (L.) Walp. Mycorrhiza 6:119–127. doi:10.1007/s005720050116

    Article  Google Scholar 

  • Frey-Klett P, Pieratt JC, Garbaye J (1997) Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas fir. Appl Environ Microbiol 63:139–144

    PubMed  CAS  Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192. doi:10.1007/s00572-003-0256-3

    Article  PubMed  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210. doi:10.1111/j.1469-8137.1994.tb04003.x

    Article  Google Scholar 

  • Garland JL, Mill AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole carbon source utilization. Appl Environ Microbiol 57:2351–2359

    PubMed  CAS  Google Scholar 

  • Gaur R, Shani N, Jeet K, Johri BN, Rossi P, Aragno M (2004) Diacetylphloroglucinol-producing pseudomonads do not influence AM fungi in wheat rhizosphere. Curr Sci 86:433–457

    Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular–arbuscular mycorrhizal infection in roots. New Phytol 124:221–230

    Google Scholar 

  • Govindarajulu M, Pfeffer PE, Jin H, Abubaker J, Douds DD, Allen JW, Bücking H, Lammers PJ, Shachar-Hill Y (2005) Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435:819–823. doi:10.1038/nature03610

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319. doi:10.1038/nrmicro1129

    Article  PubMed  CAS  Google Scholar 

  • Haas D, Keel C (2003) Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant diseases. Annu Rev Phytopathol 41:117–153. doi:10.1146/annurev.phyto.41.052002.095656

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ (2005) Signalling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42. doi:10.1146/annurev.micro.58.030603.123749

    Article  PubMed  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circular 347. Agricultural Experiment Station, University of California, Berkeley

    Google Scholar 

  • Hodge A (2001) Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient plant capture from, glycine patches in soil. New Phytol 151:725–734. doi:10.1046/j.0028-646x.2001.00200.x

    Article  CAS  Google Scholar 

  • Ianson DC, Linderman RG (1993) Variation in the response of nodulating pigeonpea (Cajanus cajan) to different isolates of mycorrhizal fungi. Symbiosis 15:105–119

    Google Scholar 

  • Johnson D, Leake JR, Ostle N, Ineson P, Read DJ (2002) In situ (CO2)-C-13 pulse-labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to the soil. New Phytol 153:327–334. doi:10.1046/j.0028-646X.2001.00316.x

    Article  CAS  Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Burger D, Haas D, Défago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2, 4-diacetylphloroglucinol. Mol Plant Microbe Interact 5:4–13

    CAS  Google Scholar 

  • Kloepper JW (1993) Plant growth promoting rhizobacteria as biological control agents. In: Metting FB Jr (ed) Soil microbia ecology—applications in agricultural and environmental management. Marcel Dekker, New York, pp 255–274

    Google Scholar 

  • Landa BB, Mavrodi OV, Raaijmakers JM, Gardener BBM, Thomashow LS, Weller DM (2002) Differential ability of genotypes of 2, 4-diacetylphloroglucinol-producing Pseudomonas fluorescens strains to colonize the roots of pea plants. Appl Environ Microbiol 68:3226–3237. doi:10.1128/AEM.68.7.3226-3237.2002

    Article  PubMed  CAS  Google Scholar 

  • Langmeier M, Oberson A, Kreuzer M, Frossard E (1998) N fertilizer efficiency of cattle manure. Part I: 15N labeling of cow excreta. First Symposium of the Competence Centre for Plant Sciences, 10 Dec, Zurich

  • Legendre P, Legendre L (1998) Numerical ecology. Second English edition. Elsevier, Amsterdam

    Google Scholar 

  • Levy A, Chang BJ, Abbott LK, Kuo J, Harnett G, Inglis TJJ (2003) Invasion of spores of the arbuscular mycorrhizal fungus Gigaspora decipiens by Burkholderia spp. Appl Environ Microbiol 69:6250–6256. doi:10.1128/AEM.69.10.6250-6256.2003

    Article  PubMed  CAS  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizospheric effect. Phytopathology 78:366–371

    Google Scholar 

  • Linderman RG (2000) Effects of mycorrhizas on plant tolerance to disease. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology of function. Kluwer, Dordrecht, pp 345–365

    Google Scholar 

  • Mäder P, Vierheilig H, Streitwolf-Engel R, Boller T, Frey B, Christie P, Wiemken A (2000) Transport of 15N from a soil compartment separated by a poly tetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol 146:155–161. doi:10.1046/j.1469-8137.2000.00615.x

    Article  Google Scholar 

  • Meyer JR, Linderman RG (1986a) Response of subterranean clover to dual inoculation with vesicular–arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biol Biochem 18:185–190. doi:10.1016/0038-0717(86)90025-8

    Article  CAS  Google Scholar 

  • Meyer JR, Linderman RG (1986b) Selective influence on populations of rhizosphere and rhizoplane bacteria and actinomycetes by mycorrhiza formed by Glomus fasciculatum. Soil Biol Biochem 18:191–196. doi:10.1016/0038-0717(86)90026-X

    Article  Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Appl Environ Microbiol 69:2816–2824. doi:10.1128/AEM.69.5.2816-2824.2003

    Article  PubMed  CAS  Google Scholar 

  • Onishi T, Gall RS, Mayer ML (1975) An improved assay of inorganic phosphate in the presence of extralabile phosphate compounds: application to the ATPase assay in the presence of phosphocreatine. Anal Biochem 69:261–267. doi:10.1016/0003-2697(75)90585-0

    Article  Google Scholar 

  • Paulitz TC, Linderman RG (1989) Interactions between fluorescent pseudomonads and VA mycorrhizal fungi. New Phytol 113:37–45. doi:10.1111/j.1469-8137.1989.tb02393.x

    Article  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular–arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158

    Article  Google Scholar 

  • Pielou EC (1984) The interpretation of ecological data: a data on classification and ordination. Wiley, New York

    Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2,4-diacetyl-phloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol Plant Microbe Interact 11:144–152. doi:10.1094/MPMI.1998.11.2.144

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Bonsall RF, Weller DM (1999) Effect of population density of Pseudomonas fluorescens on production of 2, 4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89:470–475. doi:10.1094/PHYTO.1999.89.6.470

    Article  PubMed  CAS  Google Scholar 

  • Raaijmakers JM, de Bruijn I, de Kock MJD (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant Microbe Interact 19:699–710. doi:10.1094/MPMI-19-0699

    Article  PubMed  CAS  Google Scholar 

  • Rainey PB (1999) Adaptation of Pseudomonas fluorescens to the plant rhizosphere. Appl Environ Microbiol 1:243–257. doi:10.1046/j.1462-2920.1999.00040.x

    Article  CAS  Google Scholar 

  • Ravnskov S, Nybore O, Jakobsen I (1999) Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil. New Phytol 142:113–122. doi:10.1046/j.1469-8137.1999.00374.x

    Article  Google Scholar 

  • Rezzonico F, Zala M, Keel C, Duffy C, Moënne-Loccoz Y, Défago G (2007) Is the ability of biocontrol fluorescent pseudomonads to produce the antifungal metabolite 2, 4-diacetylphloroglucinol really synonymous with higher plant protection? New Phytol 173:861–872. doi:10.1111/j.1469-8137.2006.01955.x

    Article  PubMed  CAS  Google Scholar 

  • Rhodes LH, Gerdemann JW (1975) Phosphate uptake zones of mycorrhizal and non-mycorrhizal onions. New Phytol 75:555–561. doi:10.1111/j.1469-8137.1975.tb01419.x

    Article  Google Scholar 

  • Schnider-Keel U, Keel C, Blumer C, Troxer J, Défago G, Haas D (1995) Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. J Bacteriol 177:5387–5392

    Google Scholar 

  • Schreiner RP, Mihara KL, McDaniel H, Bethlenfalvay GJ (1997) Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil 188:199–209. doi:10.1023/A:1004271525014

    Article  CAS  Google Scholar 

  • Schussler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421. doi:10.1017/S0953756201005196

    Article  Google Scholar 

  • Singh S, Kapoor KK (1998) Effects of inoculation of phosphate solubilizing microorganisms and an arbuscular mycorrhizal fungus on mungbean grown under natural soil conditions. Mycorrhiza 7:249–253. doi:10.1007/s005720050188

    Article  CAS  Google Scholar 

  • Smith FA, Read SE (1997) Structural diversity in (vesicular)–arbuscular mycorrhizal symbiosis. New Phytol 137:373–388. doi:10.1046/j.1469-8137.1997.00848.x

    Article  Google Scholar 

  • Thomashow LS, Weller DM (1995) Plant microbe interact vol. 1. In: Stacey G, Keen N (eds) Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. Chapman and Hall, New York, pp 187–235

    Google Scholar 

  • Toljander JF, Artursson V, Paul LR, Janssom JK, Finlay RD (2006) Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett 254:34–40. doi:10.1111/j.1574-6968.2005.00003.x

    Article  PubMed  CAS  Google Scholar 

  • Toro M, Azcon R, Barea JM (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate solubilizing rhizobacteria to improve rock phosphate bioavailability (P-32) and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    PubMed  CAS  Google Scholar 

  • Vázquez MM, César S, Azcón R, Barea JM (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272. doi:10.1016/S0929-1393(00)00075-5

    Article  Google Scholar 

  • Vosátka M, Gryndler M (1999) Treatment with culture fractions from Pseudomonas putida modifies the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Appl Soil Ecol 11:245–251. doi:10.1016/S0929-1393(98)00151-6

    Article  Google Scholar 

  • Watanabe FS, Olsen SR (1965) Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sc Soc Am Proc 29:677–678

    Article  CAS  Google Scholar 

  • Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, Bankhead SB, Molar RA, Bonsall RF, Mavrodi DV, Thomashow LS (2007) Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol 9:4–20. doi:10.1055/s-2006-924473

    Article  PubMed  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    PubMed  CAS  Google Scholar 

  • Wyss P, Boller T, Wiemken A (1991) Phytoalexin response is elicited by a pathogen Rhizoctonia solani but not by mycorrhizal fungus (Glomus mosseae) in soybean roots. Experientia 47:395–399. doi:10.1007/BF01972082

    Article  CAS  Google Scholar 

  • Xavier LJC, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35:471–478. doi:10.1016/S0038-0717(03)00003-8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Alok Adholeya for providing some mycorrhizal inocula; Geneviéve Défago and Linda Thomashow for providing the Pseudomonas cultures; and David Roesti, Feng He, and Bharani Kumar for statistical analysis and interpretation. We thank Roel M. Schaaper, Rajesh Kasiviswanathan, and Greg Stuart for critical comments on the manuscript. This work was funded by Indo-Swiss Collaboration in Biotechnology (ISCB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepti Dwivedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dwivedi, D., Johri, B.N., Ineichen, K. et al. Impact of antifungals producing rhizobacteria on the performance of Vigna radiata in the presence of arbuscular mycorrhizal fungi. Mycorrhiza 19, 559–570 (2009). https://doi.org/10.1007/s00572-009-0253-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-009-0253-2

Keywords

Navigation