Skip to main content
Log in

Characterization of juvenile maritime pine (Pinus pinaster Ait.) ectomycorrhizal fungal community using morphotyping, direct sequencing and fruitbodies sampling

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Using ectomycorrhizal root tip morphotyping (anatomical and morphological identification), molecular analysis (internal transcribed spacer region amplification and sequencing), and fruitbody sampling, we assessed diversity and composition of the ectomycorrhizal fungal community colonizing juvenile Pinus pinaster Ait. under natural conditions in NW Spain. Overall, we found 15 Basidiomycetes and two Ascomycetes. Members of the family Thelephoraceae represented up to 59.4% of the samples. The most frequent species was Tomentella sublilacina followed by Thelephora terrestris, Russula drimeia, Suillus bovinus, and Paxillus involutus, while the less frequent were Pseudotomentella tristis, Lactarius subdulcis, Russula ochroleuca, and Entoloma conferendum. From October 2007 to June 2008, we sampled 208 sporocarps belonging to seven genera and nine species: Thelephora terrestris, Paxillus involutus, Suillus bovinus, Xerocomus badius, Scleroderma verrucosum, Amanita gemmata, A. rubescens, Amanita sp., and Russula sp. The species belonging to the genus Amanita, X. badius and S. verrucosum were not found on root samples. By comparing our results with a bibliographic review of papers published from 1922 to 2006, we found five genera and six species which have not been previously reported in symbiosis with P. pinaster. This is the first time that the diversity of the ectomycorrhizal fungal community associated with P. pinaster was investigated using molecular techniques. Considering that only 38% of the genera found by sequencing were found as fruitbodies, we conclude that integrating morphotyping and sporocarps surveys with molecular analysis of ectomycorrhizas is important to documenting the ectomycorrhizal fungus community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agerer R (ed) (1987–2002) Colour atlas of ectomycorrhizae 1st–12th del. Einhorn, Schwäbisch Gmünd

  • Ágreda T, Fernández M (2003) Producción micológica en masas de Pinus pinaster Ait.del sudeste de la provincia de Soria. I Congreso Nacional de Micología Forestal Aplicada, Soria, Spain

    Google Scholar 

  • Bogeat-Triboulot MB, Bartoli F, Garbaye J, Marmeisse R, Tagu D (2004) Fungal ectomycorrhizal community and drought affect root hydraulic properties and soil adherence to roots of Pinus pinaster seedlings. Plant Soil 267:213–223 doi:10.1007/s11104-005-5349-7

    Article  CAS  Google Scholar 

  • Bougoure DS (2006) Ericaceae root associated fungi revealed by culturing and culture-independent molecular methods. PhD dissertation, Centre for Horticulture and Plant Sciences, University of Western Sydney, Sydney, Australia

  • Burke DJ, Martin KJ, Rygiewicz PT, Topa MA (2005) Ectomycorrhizal fungi identification in single and pooled root samples: terminal restriction fragment length polymorphism (TRFLP) and morphotyping compared. Soil Biol Biochem 37:1683–1694 doi:10.1016/j.soilbio.2005.01.028

    Article  CAS  Google Scholar 

  • Caldwell AB, Jumpponen A, Trappe JM (2000) Utilization of major detrital substrates by dark-septate, root endophytes. Mycologia 92(2):230–232 doi:10.2307/3761555

    Article  Google Scholar 

  • Consellería de Medio Ambiente (2008) Informe climatolóxico ano 2007. Consellería de Medio Ambiente, Xunta de Galicia

    Google Scholar 

  • Dahlberg A (2001) Community ecology of ectomycorrhizal fungi: an advancing interdisciplinary field. New Phytol 150:555–562 doi:10.1046/j.1469-8137.2001.00142.x

    Article  Google Scholar 

  • Egger KN (1995) Molecular analysis of ectomycorrhizal fungal communities. Can J Bot 73:S1415–S1422 doi:10.1139/b95-405

    Article  CAS  Google Scholar 

  • Fernández de Ana Magán FJ, Rodríguez Fernández A (eds) (2000) Os cogumelos nos ecosistemas forestais galegos. Edicións Xerais de Galicia, Vigo, Spain

  • Fernández-Toirán LM, Ágreda T, Olano JM (2006) Stand age and sampling year effect on the fungal fruit body community in Pinus pinaster forest in central Spain. Can J Bot 84:1249–1258 doi:10.1139/B06-087

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rust. Mol Ecol 2:113–118 doi:10.1111/j.1365-294X.1993.tb00005.x

    Article  CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1996) Community structure of ectomycorrizal fungi in a Pinus muricata forest: above- and below-ground views. Can J Bot 74:1572–1583 doi:10.1139/b96-190

    Article  Google Scholar 

  • Gehring CA, Theimer TC, Whitham TG, Keim P (1998) Ectomycorrhizal fungal community structure of pinyon pine growing in two environmental extremes. Ecology 79:1562–1572

    Article  Google Scholar 

  • Hambleton S (2005) Meliniomyces, a new anamorph genus for root-associated fungi with phylogenetic affinities to Rhizoscyphus ericae (Hymenoscyphus ericae), Leotiomycetes. Stud Mycol 53:1–27

    Article  Google Scholar 

  • Harley JL, Smith SE (eds) (1983) Mycorrhizal symbiosis. Academic, London

  • Horton TR (2002) Molecular approaches to ectomycorrhizal diversity studies: variation in ITS at a local scale. Plant Soil 244:29–39 doi:10.1023/A:1020268020563

    Article  CAS  Google Scholar 

  • Horton TS, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871 doi:10.1046/j.0962-1083.2001.01333.x

    Article  CAS  PubMed  Google Scholar 

  • Ingham ER, Molina R (1991) Interactions among mycorrhizal fungi, rhizosphere organisms, and plants. In: Barbosa P, Krischik VA, Jones CG (eds) Microbial mediation of plant–herbivore interactions. Wiley, S. Francisco, pp 169–197

    Google Scholar 

  • Jonsson L, Dahlberg A, Nilsson M, Zackrisson O, Karen O (1999) Ectomycorrhizal fungal communities in late-successional Swedish boreal forests and composition following wildfire. Mol Ecol 8:205–217 doi:10.1046/j.1365-294x.1999.00553.x

    Article  Google Scholar 

  • Kåren O, Högberg N, Dahlberg A, Jonsson L, Nylund JE (1997) Inter- and intraspecific variation in the ITS region of rDNA of ectomycorrhizal fungi in fennoscandia as detected by endonuclease analysis. New Phytol 136:313–325 doi:10.1046/j.1469-8137.1997.00742.x

    Article  Google Scholar 

  • Kõljalg U, Dahlerg A, Taylor AFS, Larsson E, Hallenberg N, Stenlid J, Larsson KH, Fransson PM, Karen O, Jonsson L (2000) Diversity and abundance of resupinate thelephoroid fungi as ectomycorrhizal symbionts in Swedish boreal forest. Mol Ecol 9:1985–1996 doi:10.1046/j.1365-294X.2000.01105.x

    Article  PubMed  Google Scholar 

  • Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Hoiland K, Kjoller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Vralstad T, Ursing BM (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytol 166:1063–1068 doi:10.1111/j.1469-8137.2005.01376.x

    Article  PubMed  Google Scholar 

  • Macías F, Calvo de Anta R (2008) Mapas de solos de Galicia Escala 1:50000. Consellería de Medio Ambiente e Desenvolvemento Sostible. Xunta de Galicia

  • Martín-Pinto P, Vaquerizo H, Peñalver F, Olaizola J, Oria-de-Rueda JA (2006) Early effects of a wildfire on the diversity and production of fungal communities in Mediterranean vegetation types dominated by Cistus ladanifer and Pinus pinaster in Spain. For Ecol Manage 225:296–305

    Article  Google Scholar 

  • Massicotte HB, Molina R, Tackaberry LE, Smith JE, Amaranthus MP (1999) Diversity and host specificity of ectomycorrhizal fungi retrieved from three adjacent forest sites by five host species. Can J Bot 77:1053–1073 doi:10.1139/cjb-77-8-1053

    Google Scholar 

  • Menkis A, Vasiliauskas R, Taylor AFS, Stenlid J, Finlay R (2005) Fungal communities in mycorrhizal roots of conifer seedlings in forest nurseries under different cultivation systems, assessed by morphotyping, direct sequencing and mycelial isolation. Mycorrhiza 16:33–41 doi:10.1007/s00572-005-0011-z

    Article  PubMed  Google Scholar 

  • Ministerio Medio Ambiente (2006) Tercer Inventario Forestal Nacional (1997–2006). Madrid

  • Molina R, Massicotte HB, Trappe JM (1992) Specificity phenomena in mycorrhizal symbiosis: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant–fungal process. Routledge, New York, USA, pp 357–423

    Google Scholar 

  • Nylund JE, Dahlberg A, Högberg N, Karén O, Grip K, Johnsson L (1995) Methods for studying species composition of mycorrhizal fungal communities in ecological studies and environmental monitoring. In: Stocchi V, Bonfante P, Nuti M (eds) Biotechnology of ectomycorrhizae. Plenum, New York, pp 229–239

    Chapter  Google Scholar 

  • Pera J, Álvarez IF (1995) Ectomycorrhizal fungi of Pinus pinaster. Mycorrhiza 5:193–200 doi:10.1007/BF00203337

    Article  Google Scholar 

  • Sakakibara SM, Jones MD, Gillespie M, Hagerman SM, Forrest ME, Simard SW, Durall DM (2002) A comparison of ectomycorrhiza identification based on morphotyping and PCR-RFLP analysis. Mycol Res 106:868–878 doi:10.1017/S0953756202006263

    Article  CAS  Google Scholar 

  • Smith SE, Read D (eds) (1997) Mycorrhizal symbiosis. Academic, San Diego

  • Taylor AFS, Alexander I (2005) The ectomycorrhizal symbiosis: life in the real world. Mycologist 19:102–111 doi:10.1017/S0269915X05003034

    Article  Google Scholar 

  • Taylor DL, Bruns TD (1999) Community structure of ectomycorrhizal fungi in Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 8:1837–1850 doi:10.1046/j.1365-294x.1999.00773.x

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Kõljalg U, Hallenberg N, Larsson KH (2003) Fine scale distribution of ectomycorrhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol 159:153–165 doi:10.1046/j.1469-8137.2003.00792.x

    Article  CAS  Google Scholar 

  • Trevor E, Yu J-C, Egger KN (2001) Ectendomycorrhizal associations-characteristics and functions. Mycorrhiza 11:167–177 doi:10.1007/s005720100110

    Article  Google Scholar 

  • Wurzburger N, Bidartondo MI, Bledsoe CS (2001) Characterization of Pinus ectomycorrhizas from conifer and pygmy forest using morphotyping and molecular methods. Can J Bot 79:1211–1216 doi:10.1139/cjb-79-10-1211

    CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided in part by the European Social Fund and by the Ministerio de Ciencia e Innovación of the Spanish Government through the project RTA2006-00124-00-00. Montserrat Pestaña Nieto has a pre-doctoral grant provided by the local government of Galicia (Conselleria de Medio Ambiente, Xunta de Galicia). We thank Dr. Christopher D. Beatty for checking English and Jose Gómez Bragaña for the help during field samplings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Santolamazza Carbone.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM

(DOC 85.5 KB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pestaña Nieto, M., Santolamazza Carbone, S. Characterization of juvenile maritime pine (Pinus pinaster Ait.) ectomycorrhizal fungal community using morphotyping, direct sequencing and fruitbodies sampling. Mycorrhiza 19, 91–98 (2009). https://doi.org/10.1007/s00572-008-0207-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-008-0207-0

Keywords

Navigation