Skip to main content

Advertisement

Log in

Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Bacterial strains from mycorrhizal roots (three belonging to Comamonadaceae and one to Oxalobacteraceae) and from non-mycorrhizal roots (two belonging to Comamonadaceae) of Medicago truncatula and two reference strains (Collimonas fungivorans Ter331 and Pseudomonas fluorescens C7R12) were tested for their effect on the in vitro saprophytic growth of Glomus mosseae BEG12 and on its colonization of M. truncatula roots. Only the Oxalobacteraceae strain, isolated from barrel medic mycorrhizal roots, and the reference strain P. fluorescens C7R12 promoted both the saprophytic growth and root colonization of G. mosseae BEG12, indicating that they acted as mycorrhiza helper bacteria. Greatest effects were achieved by P. fluorescens C7R12 and its influence on the saprophytic growth of G. mosseae was compared to that on Gigaspora rosea BEG9 to determine if the bacterial stimulation was fungal specific. This fungal specificity, together with plant specificity, was finally evaluated by comparing bacterial effects on arbuscular mycorrhizal symbiosis when each of the fungal species was inoculated to two different plant species (M. truncatula and Lycopersicon esculentum). The results obtained showed that promotion of saprophytic growth by P. fluorescens C7R12 was expressed in vitro towards G. mosseae but not towards G. rosea. Bacterial promotion of mycorhization was also expressed towards G. mosseae, but not G. rosea, in roots of M. truncatula and L. esculentum. Taken together, results indicated that enhancement of arbuscular mycorrhiza development was only induced by a limited number of bacteria, promotion by the most efficient bacterial strain being fungal and not plant specific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Azcón R (1989) Selective interaction between free-living rhizosphere bacteria and vesicular-arbuscular mycorrhizal fungi. Soil Biol Biochem 21:639–644

    Article  Google Scholar 

  • Azcón-Aguilar C, Diaz-Rodriguez R, Barea JM (1986) Effects of soil microorganisms on spore germination and growth of the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Trans Br Mycol Soc 86:337–340

    Article  Google Scholar 

  • Barea JM, Gryndler M, Lemanceau P, Schüepps H, Azcòn R (2002) The rhizosphere of mycorrhizal plants. In: Gianinazzi S, Schüepps H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture: from genes to bioproducts. Birkhäuser, Basel, Switzerland, pp 1–18

    Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Article  Google Scholar 

  • Berta G, Sampò S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctonia root-rot of tomato by Glomus mosseae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Eur J Plant Pathol 111:279–288

    Article  Google Scholar 

  • Bever JD, Pringle A, Schultz PA (2002) Dynamics within the plant-arbuscular mycorrhizal fungal mutualism: testing the nature of community feedback. In: van der Heijden MGA, Sanders IE (eds) Mycorrhizal Ecology. Springer, Heidelberg, Germany, pp 267–292

    Google Scholar 

  • Budi SW, van Tuinen D, Martinotti MG, Gianinazzi S (1999) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhizal development and antagonistic towards soilborne fungal pathogens. Appl Environ Microbiol 11:5148–5150

    Google Scholar 

  • Burleigh SH, Cavagnaro T, Jakobsen I (2002) Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J Exp Bot 53:1593–1601

    Article  CAS  PubMed  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defence responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 10:1017–1028

    Article  Google Scholar 

  • de Boer W, Klein Gunnewiek JA, Lafeber P, Janse JD, Spit BE, Woldendorp JW (1998) Anti-fungal properties of chitinolytic dune soil bacteria. Soil Biol Biochem 30:193–203

    Article  Google Scholar 

  • de Boer W, Leveau JHJ, Kowalchuk GA, Klein Gunnewiek PJA, Abeln ECA, Figge MJ, Sjollema K, Janse JD, van Veen JA (2004) Collimonas fungivorans gen. nov., sp. nov., a chitinolytic soil bacterium with the ability to grow on living fungal hyphae. Int J Syst Evol Microbiol 54:857–864

    Article  PubMed  Google Scholar 

  • Eparvier A, Lemanceau P, Alabouvette C (1991) Population dynamics of non-pathogenic Fusarium and fluorescent Pseudomonas strains in rockwool, a substratum for soilless culture. FEMS Microbiol Ecol 86:177–184

    Article  Google Scholar 

  • Forbes BA, Sahm DE, Weissfeld AS (1998) Bailey & Scott’s diagnostic microbiology, 10th edn. Mosby, St. Louis

    Google Scholar 

  • Frey P, Frey-Klett P, Garbaye J, Berge O, Heulin T (1997) Metabolic and genotypic fingerprinting of fluorescent pseudomonads associated with Douglas fir Laccaria bicolor mycorrhizosphere. Appl Environ Microbiol 63:1852–1860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhizal helper bacteria revisited. New Phytol 176:22–36

    Article  CAS  PubMed  Google Scholar 

  • Gamalero E, Martinotti MG, Trotta A, Lemanceau P, Berta G (2002) Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol 155:293–300

    Article  Google Scholar 

  • Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192

    Article  PubMed  Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Giovannetti M, Sbrana C, Strani P, Agnolucci M, Rinaudo V, Avio L (2003) Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. Appl Environ Microbiol 69:616–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamilova F, Leveau JHJ, Lugtenberg B (2007) Collimonas fungivorans, an unpredicted in vitro but efficient in vivo biocontrol agent for the suppression of tomato foot and root rot. Mycorrhiza 9:1597–1603

    CAS  Google Scholar 

  • Klironomos JN, McCune J, Hart M, Neville J (2000) The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol Lett 3:137–141

    Article  Google Scholar 

  • Lemanceau P, Alabouvette C (1991) Biological control of Fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium. Crop Prot 10:279–286

    Article  Google Scholar 

  • Lemanceau P, Samson R, Alabouvette C (1988) Recherches sur la résistance des sols aux maladies. XV. Comparaison des populations de Pseudomonas fluorescents dans un sol résistant et un sol sensible aux fusarioses vasculaires. Agronomie 8:243–249

    Article  Google Scholar 

  • Lumini E, Bianciotto V, Jargeat P, Novero M, Salvioli A, Faccio A, Bécard G, Bonfante P (2007) Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria. Cell Microbiol 9:1716–1729

    Article  CAS  PubMed  Google Scholar 

  • Monzon A, Azcón R (1996) Relevance of mycorrhizal fungal origin and host plant genotype to inducing growth and nutrient uptake in Medicago species. Agric Ecosyst Environ 60:9–15

    Article  Google Scholar 

  • Mosse B (1956) Fructification of an Endogone species causing endotrophic mycorrhiza on fruit plants. Ann Bot (Lond) 20:349–362

    Article  Google Scholar 

  • Mosse B (1962) The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions. J Gen Microbiol 27:509–520

    Article  CAS  PubMed  Google Scholar 

  • Nicolson TH, Schenck NC (1979) Endogonaceous mycorrhizal endophytes in Florida. Mycologia 71:178–198

    Article  Google Scholar 

  • Offre P, Pivato B, Mazurier S, Siblot S, Berta G, Lemanceau P, Mougel P (2008) Microdiversity of Burkholderiales associated with mycorrhizal and non-mycorrhizal roots of Medicago truncatula. FEMS Microbiol Ecol 65:180–192

    Article  CAS  PubMed  Google Scholar 

  • Offre P, Pivato B, Siblot S, Gamalero E, Corberand T, Lemanceau P, Mougel C (2007) Identification of bacterial groups preferentially associated with mycorrhizal roots of Medicago truncatula. Appl Environ Microbiol 73:913–921

    Article  CAS  PubMed  Google Scholar 

  • Pivato B, Mazurier S, Lemanceau P, Siblot S, Berta G, Mougel C, van Tuinen D (2007) Medicago species affect the community composition of arbuscular mycorrhizal fungi associated with roots. New Phytol 176:197–210

    Article  CAS  PubMed  Google Scholar 

  • Pyrozinski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6:153–164

    Article  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  CAS  PubMed  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91:11841–11843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez L, Weidmann S, Brechenmacher L, Batoux M, van Tuinen D, Lemanceau P, Gianinazzi S, Gianinazzi-Pearson V (2004) Common gene expression in Medicago truncatula roots in response to Pseudomonas fluorescens colonization, mycorrhiza development and nodulation. New Phytol 161:855–863

    Article  CAS  Google Scholar 

  • Sanders IR (2002) Specificity in the arbuscular mycorrhizal symbiosis. In: van der Heijden MGA, Sanders IE (eds) Mycorrhizal Ecology. Springer, Heidelberg, Germany, pp 415–437

    Chapter  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Selim S, Negrel J, Govaerts C, Gianinazzi S, van Tuinen D (2005) Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 isolated from the Sorghum mycorrhizosphere. Appl Environ Microbiol 71:6501–6507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal Symbiosis. Second Edition. USA. Academic, San Diego, California

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Staddon PL, Ramsey CB, Ostle N, Ineson P, Fitter AH (2003) Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of C-14. Science 300:1138–1140

    Article  CAS  PubMed  Google Scholar 

  • Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1997) Clonal growth traits of two Prunella species are determined by co-occurring arbuscular mycorrhizal fungi from a calcareous grassland. J Ecol 85:181–191

    Article  Google Scholar 

  • Trotta A, Varese GC, Gnavi E, Fusconi A, Sampò S, Berta G (1996) Interactions between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209

    Article  CAS  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA Presse, Paris, France, pp 217–221

    Google Scholar 

  • Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095

    Article  CAS  PubMed  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • Walker C, Schüßler A (2004) Nomenclatural classification and new taxa in the Glomeromycota. Mycol Res 108:981–982

    Article  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363

    Article  CAS  PubMed  Google Scholar 

  • Xavier LJC, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35:471–478

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a doctoral fellowship from Italian MIUR to B. Pivato and by Burgundy regional project 06516CP0155251. The authors are grateful to G. Duc (URLEG-INRA, Dijon, France) for providing seeds of M. truncatula Gaertn. J5, and to W. de Boer (NIOO-KNAW, Centre for Terrestrial Ecology; Heteren, The Netherlands) for providing Collimonas fungivorans Ter331. Authors are grateful to A. Copetta, E. Gamalero, and N. Massa for technical help and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Lemanceau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pivato, B., Offre, P., Marchelli, S. et al. Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant. Mycorrhiza 19, 81–90 (2009). https://doi.org/10.1007/s00572-008-0205-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-008-0205-2

Keywords