Advertisement

Mycorrhiza

, Volume 19, Issue 2, pp 81–90 | Cite as

Bacterial effects on arbuscular mycorrhizal fungi and mycorrhiza development as influenced by the bacteria, fungi, and host plant

  • Barbara Pivato
  • Pierre Offre
  • Sara Marchelli
  • Bruno Barbonaglia
  • Christophe Mougel
  • Philippe Lemanceau
  • Graziella Berta
Original Paper

Abstract

Bacterial strains from mycorrhizal roots (three belonging to Comamonadaceae and one to Oxalobacteraceae) and from non-mycorrhizal roots (two belonging to Comamonadaceae) of Medicago truncatula and two reference strains (Collimonas fungivorans Ter331 and Pseudomonas fluorescens C7R12) were tested for their effect on the in vitro saprophytic growth of Glomus mosseae BEG12 and on its colonization of M. truncatula roots. Only the Oxalobacteraceae strain, isolated from barrel medic mycorrhizal roots, and the reference strain P. fluorescens C7R12 promoted both the saprophytic growth and root colonization of G. mosseae BEG12, indicating that they acted as mycorrhiza helper bacteria. Greatest effects were achieved by P. fluorescens C7R12 and its influence on the saprophytic growth of G. mosseae was compared to that on Gigaspora rosea BEG9 to determine if the bacterial stimulation was fungal specific. This fungal specificity, together with plant specificity, was finally evaluated by comparing bacterial effects on arbuscular mycorrhizal symbiosis when each of the fungal species was inoculated to two different plant species (M. truncatula and Lycopersicon esculentum). The results obtained showed that promotion of saprophytic growth by P. fluorescens C7R12 was expressed in vitro towards G. mosseae but not towards G. rosea. Bacterial promotion of mycorhization was also expressed towards G. mosseae, but not G. rosea, in roots of M. truncatula and L. esculentum. Taken together, results indicated that enhancement of arbuscular mycorrhiza development was only induced by a limited number of bacteria, promotion by the most efficient bacterial strain being fungal and not plant specific.

Keywords

Arbuscular mycorrhizas Comamonadaceae Oxalobacteraceae Pseudomonas fluorescens C7R12 Mycorrhiza helper bacteria 

Notes

Acknowledgments

This study was supported by a doctoral fellowship from Italian MIUR to B. Pivato and by Burgundy regional project 06516CP0155251. The authors are grateful to G. Duc (URLEG-INRA, Dijon, France) for providing seeds of M. truncatula Gaertn. J5, and to W. de Boer (NIOO-KNAW, Centre for Terrestrial Ecology; Heteren, The Netherlands) for providing Collimonas fungivorans Ter331. Authors are grateful to A. Copetta, E. Gamalero, and N. Massa for technical help and stimulating discussions.

References

  1. Azcón R (1989) Selective interaction between free-living rhizosphere bacteria and vesicular-arbuscular mycorrhizal fungi. Soil Biol Biochem 21:639–644CrossRefGoogle Scholar
  2. Azcón-Aguilar C, Diaz-Rodriguez R, Barea JM (1986) Effects of soil microorganisms on spore germination and growth of the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Trans Br Mycol Soc 86:337–340CrossRefGoogle Scholar
  3. Barea JM, Gryndler M, Lemanceau P, Schüepps H, Azcòn R (2002) The rhizosphere of mycorrhizal plants. In: Gianinazzi S, Schüepps H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture: from genes to bioproducts. Birkhäuser, Basel, Switzerland, pp 1–18Google Scholar
  4. Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218CrossRefGoogle Scholar
  5. Berta G, Sampò S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctonia root-rot of tomato by Glomus mosseae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Eur J Plant Pathol 111:279–288CrossRefGoogle Scholar
  6. Bever JD, Pringle A, Schultz PA (2002) Dynamics within the plant-arbuscular mycorrhizal fungal mutualism: testing the nature of community feedback. In: van der Heijden MGA, Sanders IE (eds) Mycorrhizal Ecology. Springer, Heidelberg, Germany, pp 267–292Google Scholar
  7. Budi SW, van Tuinen D, Martinotti MG, Gianinazzi S (1999) Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhizal development and antagonistic towards soilborne fungal pathogens. Appl Environ Microbiol 11:5148–5150Google Scholar
  8. Burleigh SH, Cavagnaro T, Jakobsen I (2002) Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J Exp Bot 53:1593–1601CrossRefPubMedGoogle Scholar
  9. Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defence responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 10:1017–1028CrossRefGoogle Scholar
  10. de Boer W, Klein Gunnewiek JA, Lafeber P, Janse JD, Spit BE, Woldendorp JW (1998) Anti-fungal properties of chitinolytic dune soil bacteria. Soil Biol Biochem 30:193–203CrossRefGoogle Scholar
  11. de Boer W, Leveau JHJ, Kowalchuk GA, Klein Gunnewiek PJA, Abeln ECA, Figge MJ, Sjollema K, Janse JD, van Veen JA (2004) Collimonas fungivorans gen. nov., sp. nov., a chitinolytic soil bacterium with the ability to grow on living fungal hyphae. Int J Syst Evol Microbiol 54:857–864CrossRefPubMedGoogle Scholar
  12. Eparvier A, Lemanceau P, Alabouvette C (1991) Population dynamics of non-pathogenic Fusarium and fluorescent Pseudomonas strains in rockwool, a substratum for soilless culture. FEMS Microbiol Ecol 86:177–184CrossRefGoogle Scholar
  13. Forbes BA, Sahm DE, Weissfeld AS (1998) Bailey & Scott’s diagnostic microbiology, 10th edn. Mosby, St. LouisGoogle Scholar
  14. Frey P, Frey-Klett P, Garbaye J, Berge O, Heulin T (1997) Metabolic and genotypic fingerprinting of fluorescent pseudomonads associated with Douglas fir Laccaria bicolor mycorrhizosphere. Appl Environ Microbiol 63:1852–1860PubMedPubMedCentralGoogle Scholar
  15. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhizal helper bacteria revisited. New Phytol 176:22–36CrossRefPubMedGoogle Scholar
  16. Gamalero E, Martinotti MG, Trotta A, Lemanceau P, Berta G (2002) Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol 155:293–300CrossRefGoogle Scholar
  17. Gamalero E, Trotta A, Massa N, Copetta A, Martinotti MG, Berta G (2004) Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition. Mycorrhiza 14:185–192CrossRefPubMedGoogle Scholar
  18. Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210CrossRefGoogle Scholar
  19. Giovannetti M, Sbrana C, Strani P, Agnolucci M, Rinaudo V, Avio L (2003) Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. Appl Environ Microbiol 69:616–624CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kamilova F, Leveau JHJ, Lugtenberg B (2007) Collimonas fungivorans, an unpredicted in vitro but efficient in vivo biocontrol agent for the suppression of tomato foot and root rot. Mycorrhiza 9:1597–1603Google Scholar
  21. Klironomos JN, McCune J, Hart M, Neville J (2000) The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol Lett 3:137–141CrossRefGoogle Scholar
  22. Lemanceau P, Alabouvette C (1991) Biological control of Fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium. Crop Prot 10:279–286CrossRefGoogle Scholar
  23. Lemanceau P, Samson R, Alabouvette C (1988) Recherches sur la résistance des sols aux maladies. XV. Comparaison des populations de Pseudomonas fluorescents dans un sol résistant et un sol sensible aux fusarioses vasculaires. Agronomie 8:243–249CrossRefGoogle Scholar
  24. Lumini E, Bianciotto V, Jargeat P, Novero M, Salvioli A, Faccio A, Bécard G, Bonfante P (2007) Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria. Cell Microbiol 9:1716–1729CrossRefPubMedGoogle Scholar
  25. Monzon A, Azcón R (1996) Relevance of mycorrhizal fungal origin and host plant genotype to inducing growth and nutrient uptake in Medicago species. Agric Ecosyst Environ 60:9–15CrossRefGoogle Scholar
  26. Mosse B (1956) Fructification of an Endogone species causing endotrophic mycorrhiza on fruit plants. Ann Bot (Lond) 20:349–362CrossRefGoogle Scholar
  27. Mosse B (1962) The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions. J Gen Microbiol 27:509–520CrossRefPubMedGoogle Scholar
  28. Nicolson TH, Schenck NC (1979) Endogonaceous mycorrhizal endophytes in Florida. Mycologia 71:178–198CrossRefGoogle Scholar
  29. Offre P, Pivato B, Mazurier S, Siblot S, Berta G, Lemanceau P, Mougel P (2008) Microdiversity of Burkholderiales associated with mycorrhizal and non-mycorrhizal roots of Medicago truncatula. FEMS Microbiol Ecol 65:180–192CrossRefPubMedGoogle Scholar
  30. Offre P, Pivato B, Siblot S, Gamalero E, Corberand T, Lemanceau P, Mougel C (2007) Identification of bacterial groups preferentially associated with mycorrhizal roots of Medicago truncatula. Appl Environ Microbiol 73:913–921CrossRefPubMedGoogle Scholar
  31. Pivato B, Mazurier S, Lemanceau P, Siblot S, Berta G, Mougel C, van Tuinen D (2007) Medicago species affect the community composition of arbuscular mycorrhizal fungi associated with roots. New Phytol 176:197–210CrossRefPubMedGoogle Scholar
  32. Pyrozinski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. Biosystems 6:153–164CrossRefGoogle Scholar
  33. Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921CrossRefPubMedGoogle Scholar
  34. Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci U S A 91:11841–11843CrossRefPubMedPubMedCentralGoogle Scholar
  35. Sanchez L, Weidmann S, Brechenmacher L, Batoux M, van Tuinen D, Lemanceau P, Gianinazzi S, Gianinazzi-Pearson V (2004) Common gene expression in Medicago truncatula roots in response to Pseudomonas fluorescens colonization, mycorrhiza development and nodulation. New Phytol 161:855–863CrossRefGoogle Scholar
  36. Sanders IR (2002) Specificity in the arbuscular mycorrhizal symbiosis. In: van der Heijden MGA, Sanders IE (eds) Mycorrhizal Ecology. Springer, Heidelberg, Germany, pp 415–437CrossRefGoogle Scholar
  37. Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421CrossRefGoogle Scholar
  38. Selim S, Negrel J, Govaerts C, Gianinazzi S, van Tuinen D (2005) Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. strain B2 isolated from the Sorghum mycorrhizosphere. Appl Environ Microbiol 71:6501–6507CrossRefPubMedPubMedCentralGoogle Scholar
  39. Smith SE, Read DJ (1997) Mycorrhizal Symbiosis. Second Edition. USA. Academic, San Diego, CaliforniaGoogle Scholar
  40. Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524CrossRefGoogle Scholar
  41. Staddon PL, Ramsey CB, Ostle N, Ineson P, Fitter AH (2003) Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of C-14. Science 300:1138–1140CrossRefPubMedGoogle Scholar
  42. Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1997) Clonal growth traits of two Prunella species are determined by co-occurring arbuscular mycorrhizal fungi from a calcareous grassland. J Ecol 85:181–191CrossRefGoogle Scholar
  43. Trotta A, Varese GC, Gnavi E, Fusconi A, Sampò S, Berta G (1996) Interactions between the soilborne root pathogen Phytophthora nicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209CrossRefGoogle Scholar
  44. Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA Presse, Paris, France, pp 217–221Google Scholar
  45. Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095CrossRefPubMedGoogle Scholar
  46. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  47. Walker C, Schüßler A (2004) Nomenclatural classification and new taxa in the Glomeromycota. Mycol Res 108:981–982CrossRefGoogle Scholar
  48. Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299–363CrossRefPubMedGoogle Scholar
  49. Xavier LJC, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35:471–478CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Barbara Pivato
    • 1
    • 2
  • Pierre Offre
    • 2
  • Sara Marchelli
    • 1
  • Bruno Barbonaglia
    • 1
  • Christophe Mougel
    • 2
  • Philippe Lemanceau
    • 2
    • 3
  • Graziella Berta
    • 1
  1. 1.Università del Piemonte Orientale ‘Amedeo Avogadro’AlessandriaItaly
  2. 2.INRA, Université de Bourgogne, UMR 1229 ‘Microbiologie du Sol et de l’Environnement’, CMSEDijonFrance
  3. 3.UMR Microbiologie du Sol et de l’Environnement, INRA/Université de Bourgogne, CMSEDijon cedexFrance

Personalised recommendations