Skip to main content
Log in

Involvement of reactive oxygen species during early stages of ectomycorrhiza establishment between Castanea sativa and Pisolithus tinctorius

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Evidence for the participation of reactive oxygen species (ROS) and antioxidant systems in ectomycorrhizal (ECM) establishment is lacking. In this paper, we evaluated ROS production and the activities of superoxide dismutase (SOD) and catalase (CAT) during the early contact of the ECM fungus Pisolithus tinctorius with the roots of Castanea sativa (chestnut tree). Roots were placed in contact with P. tinctorius mycelia, and ROS production was evaluated by determining the levels of H2O2 and O2 ·− during the early stages of fungal contact. Three peaks of H2O2 production were detected, the first two coinciding with O2 ·− bursts. The first H2O2 production peak coincided with an increase in SOD activity, whereas CAT activity seemed to be implicated in H2O2 scavenging. P. tinctorius growth was evaluated in the presence of P. tinctorius-elicited C. sativa crude extracts prepared during the early stages of fungal contact. Differential hyphal growth that matched the H2O2 production profile with a delay was detected. The result suggests that during the early stages of ECM establishment, H2O2 results from an inhibition of ROS-scavenging enzymes and plays a role in signalling during symbiotic establishment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebi H (1983) Catalase. In: Bergmeyer HU (ed) Enzymes 1: oxidoreductases, transferases, vol 3. Verlag Chemie, New York, pp 273–286

    Google Scholar 

  • Arines J, Quintela M, Vilariño A, Palma JM (1994) Protein patterns and superoxide dismutase activity in non-mycorrhizal and arbuscular mycorrhizal. Pisum sativum L. plants. Plant Soil 166:37–45

    Article  CAS  Google Scholar 

  • Bais H, Park S-W, Weir T, Callaway R, Vivanco J (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    Article  CAS  PubMed  Google Scholar 

  • Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33:299–321

    Article  CAS  PubMed  Google Scholar 

  • Beyer WF, Fridovich I (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161:559–566

    Article  CAS  PubMed  Google Scholar 

  • Blilou I, Bueno P, Ocampo JA, García-Garrido JM (2000) Induction of catalase and ascorbate peroxidase activities in tobacco roots inoculated with the arbuscular mycorrhizal Glomus mosseae. Mycol Res 104:722–725

    Article  CAS  Google Scholar 

  • Cairney J, Chambers S (1997) Interactions between Pisolithus tinctorius and its hosts: a review of current knowledge. Mycorrhiza 7:117–131

    Article  Google Scholar 

  • Dixon RA, Lamb CJ (1990) Molecular communication in interactions between plants and microbial pathogens. Annu Rev Plant Physiol Plant Mol Biol 41:339–367

    Article  CAS  Google Scholar 

  • Duplessis S, Courty P-E, Tagu D, Martin F (2005) Transcript patterns associated with ectomycorrhiza development in Eucalyptus globulus and Pisolithus microcarpus. New Phytol 165:599–611

    Article  CAS  PubMed  Google Scholar 

  • Fester T, Hause G (2005) Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. Mycorrhiza 15:373–379

    Article  CAS  PubMed  Google Scholar 

  • García-Garrido JM, Ocampo J (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377–1386

    Article  PubMed  Google Scholar 

  • Giovannetti M, Sbrana C (1998) Meeting a non-host: the behaviour of AM fungi. Mycorrhiza 8:123–130

    Article  Google Scholar 

  • Hirsch AM, Bauer WD, Bird DM, Cullimore J, Tyler B, Yoder J (2003) Molecular signals and receptors: controlling rhizosphere interacting between plants and other organisms. Ecology 84:858–868

    Article  Google Scholar 

  • Johansson T, Le Quéré A, Ahren D, Söderström B, Erlandsson R, Lundeberg J, Uhlén M, Tunlid A (2004) Transcriptional responses of Paxillus involutus and Betula pendula during formation of ectomycorrhizal root tissue. Mol Plant-Microb Interact 2:202–215

    Article  Google Scholar 

  • Kapulnik Y, Volpin H, Itzhaki H, Ganon D, Galili S, David R, Shaul O, Elad Y, Chet I, Okon Y (1996) Suppression of defence responses in mycorrhizal alfalfa tobacco roots. New Phytol 133:59–64

    Article  Google Scholar 

  • Lagrange H, Jay-Allgmand C, Lapeyrie F (2001) Rutin, the phenolglycoside from eucalyptus root exudates, stimulates Pisolithus hyphal growth at picomolar concentrations. New Phytol 149:349–355

    Article  CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  PubMed  Google Scholar 

  • Lambais MR, Rios-Ruíz WF, Andrade RM (2003) Antioxidant responses in bean (Phaseolus vulgaris) roots colonized by arbuscular mycorrhizal fungi. New Phytol 160:421–428

    Article  CAS  Google Scholar 

  • Loreto F, Velikova V (2001) Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127:1781–1787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lum MR, Hirsch AM (2003) Roots and their symbiotic microbes: strategies to obtain nitrogen and phosphorus in a nutrient-limiting environment. J Plant Growth Regul 21:368–382

    Article  Google Scholar 

  • Mahalingam R, Fedoroff N (2003) Stress response, cell death and signalling: the many faces of reactive oxygen species. Physiol Plant 119:56–68

    Article  CAS  Google Scholar 

  • Martin F, Laurent P, de Carvalho D, Voiblet C, Balestrini R, Bonfante P, Tagu D (1999) Cell wall proteins of the ectomycorrhizal basidiomycete Pisolithus tinctorius: identification, function, and expression in symbiosis. Fungal Genet Biol 27:161–174

    Article  CAS  PubMed  Google Scholar 

  • Martin F, Duplessis S, Ditengou F, Lagrange H, Voiblet C, Lapeyrie F (2001) Development cross talking in the ectomycorrhizal symbiosis: signals and communication genes. New Phytol 151:145–154

    Article  CAS  Google Scholar 

  • Martins A, Barroso J, Pais MS (1996) Effect of ectomycorrhizal fungi on survival and growth of micropropagated plants and seedlings of Castanea sativa Mill. Mycorrhiza 6:265–270

    Article  Google Scholar 

  • Marx DH (1969) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology 59:153–163

    Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  CAS  PubMed  Google Scholar 

  • Mysore KS, Ryu C-M (2004) Nonhost resistance: how much do we know? Trends Plant Sci 9:97–104

    Article  CAS  PubMed  Google Scholar 

  • Podila GK (2002) Signalling in mycorrhizal symbioses—elegant mutants lead the way. New Phytol 154:541–551

    Article  Google Scholar 

  • Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gómez M, del Río LA, Sandalio LM (2004) Cadmium-induced subcellular accumulation of O2 and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    Article  CAS  Google Scholar 

  • Salzer P, Hebe G, Reith A, Zitterell-Haid B, Stransky H, Gaschler K, Hager A (1996) Rapid reactions of spruce cells to elicitors released from the ectomycorrhizal fungus Hebeloma crustuliniforme, and inactivation of these elicitors by extracellular spruce cell enzymes. Planta 198:118–126

    Article  CAS  Google Scholar 

  • Salzer P, Corbière H, Boller T (1999) Hydrogen peroxide accumulation in Medicago truncatula roots colonized by the arbuscular mycorrhiza-forming fungus Glomus intraradices. Planta 208:319–325

    Article  CAS  Google Scholar 

  • Schwacke R, Hager A (1992) Fungal elicitors induce a transient release of active oxygen species from cultured spruce cells that is dependent on Ca2+ and protein-kinase activity. Planta 187:136–141

    Article  CAS  PubMed  Google Scholar 

  • Sedmak JJ, Grossberg SE (1977) A rapid, sensitive, and versatile assay for protein using Coomassie Brilliant Blue G250. Anal Biochem 79:544–552

    Article  CAS  PubMed  Google Scholar 

  • Sirrenberg A, Salzer P, Hager A (1995) Induction of mycorrhiza-like structures and defence reactions in dual cultures of spruce callus and ectomycorrhizal fungi. New Phytol 130:149–156

    Article  Google Scholar 

  • Voiblet C, Duplessis S, Encelot N, Martin F (2001) Identification of symbiosis-regulated genes in Eucalyptus globulusPisolithus tinctorius ectomycorrhiza by differential hybridization of arrayed cDNAs. Plant J 25:181–191

    Article  CAS  PubMed  Google Scholar 

  • Wiemken V, Boller T (2002) Ectomycorrhiza: gene expression, metabolism and the wood-wide web. Curr Opin Plant Biol 5:1–7

    Article  Google Scholar 

  • Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by FCT (POCTI/BSE/38059/2001) and AGRO (project 689). P. Baptista was supported by the Portuguese Education Ministry (PRODEP fellowship).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Baptista.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baptista, P., Martins, A., Pais, M.S. et al. Involvement of reactive oxygen species during early stages of ectomycorrhiza establishment between Castanea sativa and Pisolithus tinctorius . Mycorrhiza 17, 185–193 (2007). https://doi.org/10.1007/s00572-006-0091-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-006-0091-4

Keywords

Navigation