Skip to main content
Log in

Sulfur uptake in the ectomycorrhizal fungus Laccaria bicolor S238N

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The importance of the ectomycorrhiza symbiosis for plant acquisition of phosphorus and nitrogen is well established whereas its contribution to sulfur nutrition is only marginally understood. In a first step to investigate the role of ectomycorrhiza in plant sulfur nutrition, we characterized sulfate and glutathione uptake in Laccaria bicolor. By studying the regulation of sulfate uptake in this ectomycorrhizal fungus, we found that in contrast to bacteria, yeast, and plants, sulfate uptake in L. bicolor was not feedback-inhibited by glutathione. On the other hand, sulfate uptake was increased by sulfur starvation as in other organisms. The activity of 3′-phosphoadenosine 5′-phosphosulfate reductase, the key enzyme of the assimilatory sulfate reduction pathway in fungi, was increased by sulfur starvation and decreased after treatment with glutathione revealing an uncoupling of sulfate uptake and reduction in the presence of reduced sulfur compounds. These results support the hypothesis that L. bicolor increases sulfate supply to the plant by extended sulfate uptake and the plant provides the ectomycorrhizal fungus with reduced sulfur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aquino MT, Plassard C (2004) Dynamics of ectomycorrhizal mycelial growth and P transfer to the host plant in response to low and high soil P availability. FEMS Microbiol Ecol 48:149–156

    Article  Google Scholar 

  • Banerjee MR, Chapman SJ, Killham K (1999) Uptake of fertilizer sulfur by maize from soils of low sulfur status as affected by vesicular-arbuscular mycorrhizae. Can J Soil Sci 79:557–559

    Article  CAS  Google Scholar 

  • Bogs J, Bourbouloux A, Cagnac O, Wachter A, Rausch T, Delrot S (2003) Functional characterization and expression analysis of a glutathione transporter, BjGT1, from Brassica juncea: evidence for regulation by heavy metal exposure. Plant Cell Environ 26:1703–1711

    Article  CAS  Google Scholar 

  • Bourbouloux A, Shahi P, Chakladar A, Delrot S, Bachhawat AK (2000) Hgt1p, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. J Biol Chem 275:13259–13265

    Article  CAS  PubMed  Google Scholar 

  • Bradfield GE, Somerfield P, Meyn T, Holby M, Babcock D, Bradley D, Segel IH (1970) Regulation of sulfate transport in filamentous fungi. Plant Physiol 46:720–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breton A, Surdin-Kerjan Y (1977) Sulfate uptake in Saccharomyces cerevisiae: biochemical and genetic study. J Bacteriol 132:224–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Battista C, Selosse MA, Bouchard D, Stenström E, Le Tacon F (1996) Variations in symbiotic efficiency, phenotypic characters and ploidy level among different isolates of the ectomycorrhizal basidiomycete Laccaria bicolor strain S238. Mycol Res 100:1315–1324

    Article  Google Scholar 

  • Galli U, Meier M, Brunold C (1993) Effects of cadmium on non-mycorrhizal and mycorrhizal Norway spruce seedlings [Picea abies (L) Karst.] and its ectomycorrhizal fungus Laccaria laccata (Scop. ex Fr.) Bk. and Br.: sulphate reduction, thiols and distribution of the heavy metal. New Phytol 125:837–843

    Article  CAS  Google Scholar 

  • Gray LE, Gerdemann JW (1972) Uptake of sulphur-35 by vesicular–arbiscular mycorrhizae. Plant Soil 39:687–698

    Article  Google Scholar 

  • Herschbach C, Rennenberg H (1994) Influence of glutathione (GSH) on net uptake of sulphate and sulphate transport in tobacco plants. J Exp Bot 45:1069–1076

    Article  CAS  Google Scholar 

  • Herschbach C, Van der Zalm E, Schneider A, Jouanin L, De Kok LJ, Rennenberg H (2000) Regulation of sulfur nutrition in wild-type and transgenic poplar over-expressing gamma-glutamylcysteine synthetase in the cytosol as affected by atmospheric H2S. Plant Physiol 124:461–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karandashov V, Bucher M (2005) Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci 10:22–29

    Article  CAS  PubMed  Google Scholar 

  • Kopriva S, Koprivova A (2003) Sulphate assimilation: a pathway which likes to surprise. In: Abrol YP, Ahmad A (eds) Sulphur in higher plants. Kluwer, Dordrecht, pp 87–112

    Chapter  Google Scholar 

  • Kopriva S, Büchert T, Fritz G, Suter M, Benda R, Schünemann V, Koprivova A, Schürmann P, Trautwein AX, Kroneck PMH, Brunold C (2002) The presence of an iron–sulfur cluster in adenosine 5′-phosphosulfate reductase separates organisms utilizing adenosine 5′-phosphosulfate and phosphoadenosine 5′-phosphosulfate for sulfate assimilation. J Biol Chem 277:21786–21791

    Article  CAS  PubMed  Google Scholar 

  • Kredich NM (1993) Gene regulation of sulfur assimilation. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rauser WE (eds) Sulfur nutrition and sulfur assimilation in higher plants. SPB, The Hague, The Netherlands, pp 61–76

    Google Scholar 

  • Kredich NM (1996) Biosynthesis of cysteine. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. American Society for Microbiology, Washington, DC, pp 514–527

    Google Scholar 

  • Kreuzwieser J, Rennenberg H (1998) Sulphate uptake and xylem loading of mycorrhizal beech roots. New Phytol 140:319–329

    Article  CAS  Google Scholar 

  • Kreuzwieser J, Herschbach C, Rennenberg H (1996) Sulphate uptake and xylem loading of non-mycorrhizal excised roots of young beech (Fagus sylvatica) trees. Plant Physiol Biochem 34:409–416

    CAS  Google Scholar 

  • Lappartient AG, Vidmar JJ, Leustek T, Glass ADM, Touraine B (1999) Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J 18:89–95

    Article  CAS  PubMed  Google Scholar 

  • Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141–165

    Article  CAS  PubMed  Google Scholar 

  • Marzluf GA (1993) Regulation of sulfur and nitrogen metabolism in filamentous fungi. Annu Rev Microbiol 47:31–55

    Article  CAS  PubMed  Google Scholar 

  • Ono BI, Hazu T, Yoshida S, Kawato T, Shinoda S, Brzvwczy J, Paszewski A (1999) Cysteine biosynthesis in Saccharomyces cerevisiae: a new outlook on pathway and regulation. Yeast 15:1365–1375

    Article  CAS  PubMed  Google Scholar 

  • Pachlewski R, Pachlewska J (1974) Studies on symbiotic properties of mycorrhizal fungi of pine (Pinus sylvestris) with the aid of the method of mycorrhizal synthesis in pure culture on agar. Forest Research Institute, Warsaw, Poland

    Google Scholar 

  • Rennenberg H (1999) The significance of ectomycorrhizal fungi for sulfur nutrition of trees. Plant Soil 215:115–122

    Article  CAS  Google Scholar 

  • Sarjala T, Potila H (2005) Effect of ectomycorrhizal fungi on nitrogen mineralisation and the growth of Scots pine seedlings in natural peat. Plant Soil 269:171–180

    Article  CAS  Google Scholar 

  • Schmidt A (1977) Assimilatory sulfate reduction via 3′-phosphoadenosine-5′-phosphosulfate (PAPS) and adenosine-5′-phosphosulfate (APS) in blue-green algae. FEMS Microbiol Lett 1:137–140

    CAS  Google Scholar 

  • Seegmüller S, Rennenberg H (2002) Transport of organic sulfur and nitrogen in the roots of young mycorrhizal pedunculate oak trees (Quercus robur L.). Plant Soil 242:291–297

    Article  Google Scholar 

  • Seegmüller S, Schulte M, Herschbach C, Rennenberg H (1996) Interactive effects of mycorrhization and elevated atmospheric CO2 on sulphur nutrition of young pedunculate oak (Quercus robur L.) trees. Plant Cell Environ 19:418–426

    Article  Google Scholar 

  • Smith FW, Hawkesford MJ, Ealing PM, Clarkson DT, van den Berg PJ, Belcher AR, Warrilow AG (1997) Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. Plant J 12:875–884

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Yano K (2005) Nitrogen delivery to maize via mycorrhizal hyphae depends on the form of N supplied. Plant Cell Environ 28:1247–1254

    Article  CAS  Google Scholar 

  • Van de Kamp M, Schuurs TA, Vos A, Van der Lende TR, Konings WN, Driessen AJM (2000) Sulfur regulation of the sulfate transporter genes sutA and sutB in Penicillium chrysogenum. Appl Environ Microbiol 66:4536–4538

    Article  PubMed  PubMed Central  Google Scholar 

  • Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos P, Krähenbühl U, Op den Camp R, Brunold C (2002) Flux control of sulphate assimilation in Arabidopsis thaliana: adenosine 5′-phosphosulphate reductase is more susceptible to negative control by thiols than ATP sulphurylase. Plant J 31:729–740

    Article  CAS  PubMed  Google Scholar 

  • Westerman S, Stulen I, Suter M, Brunold C, De Kok LJ (2001) Atmospheric H2S as sulphur source for Brassica oleracea: consequences for the activity of the enzymes of the assimilatory sulphate reduction pathway. Plant Physiol Biochem 39:425–432

    Article  CAS  Google Scholar 

  • Zhang MY, Bourbouloux A, Cagnac O, Srikanth CV, Rentsch D, Bachhawat AK, Delrot S (2004) A novel family of transporters mediating the transport of glutathione derivatives in plants. Plant Physiol 134:482–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Heinz Rennenberg, Institute of Tree Physiology Freiburg, for his support and critical reading of the manuscript, and the Deutsche Forschungsgemeinschaft for supporting this work in the frame of the priority programme SPP1084 (MolMyk) projects KO2065/2-1 and KO2065/2-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Kopriva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansouri-Bauly, H., Kruse, J., Sýkorová, Z. et al. Sulfur uptake in the ectomycorrhizal fungus Laccaria bicolor S238N. Mycorrhiza 16, 421–427 (2006). https://doi.org/10.1007/s00572-006-0052-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-006-0052-y

Keywords

Navigation