Skip to main content
Log in

Response to cadmium of Daucus carota hairy roots dual cultures with Glomus intraradices or Gigaspora margarita

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Ri T-DNA-transformed carrot roots were cultivated in two experiments either non-inoculated or inoculated with the arbuscular mycorrhizal (AM) fungi Glomus intraradices or Gigaspora margarita. The influence of two concentrations of cadmium (Cd) in the medium (2 mg l−1, 4 mg l−1) on both root and mycelium growth was tested. Both parameters were estimated at 10-day intervals for 70 or 100 days for G. intraradices and Gi. margarita, respectively. In the first experiment, G. intraradices showed a rapid spread of extraradical mycelium (ERM) and reached average densities per treatment of about 90 cm cm−2 agar medium after 70 days. At the higher Cd level, the growth of ERM was delayed in comparison to the treatment without Cd addition. Root growth was inhibited by both Cd levels; the inhibition was, however, significantly lower in the treatments inoculated with G. intraradices compared to the non-inoculated control. In the second experiment, the ERM of Gi. margarita started to grow after a period of 50 days and reached average densities per treatment of only up to 27 cm cm−2 by the end of the cultivation. The growth of Gi. margarita mycelium was not inhibited by Cd. No differences in root growth were observed between the Gi. margarita inoculated and non-inoculated treatments. The inhibitory effect of Cd on root growth differed between the non-inoculated treatments in both experiments. The study has shown that the AM fungus Glomus intraradices can alleviate Cd-induced growth inhibition to carrot hairy roots. The potential and limits of the monoxenic system in studying the interaction between AM fungi and heavy metals are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adriano DC (2001) Trace elements in terrestrial environments. Springer, Berlin Heidelberg New York

  • Bago B, Vierheilig H, Piché Y, Azcón-Aguilar C (1996) Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture. New Phytol 133:273–280

    Google Scholar 

  • Bago B, Azcón-Aguilar C, Goulet A, Piché Y (1998a) Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi. New Phytol 139:375–388

    Article  Google Scholar 

  • Bago B, Azcón-Aguilar C, Piché Y (1998b) Architecture and developmental dynamics of the external mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown under monoxenic conditions. Mycologia 90:52–62

    Google Scholar 

  • Baker JM (1987) Metal tolerance. New Phytol 106:93–111

    CAS  Google Scholar 

  • Bartolome-Esteban H, Schenck NC (1994) Spore germination and hyphal growth of arbuscular mycorrhizal fungi in relation to soil aluminium saturation. Mycologia 86:217–226

    CAS  Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Google Scholar 

  • Boddington CL, Dodd JC (1999) Evidence that differences in phosphate metabolism in mycorrhizas formed by species of Glomus and Gigaspora might be related to their life-cycle strategies. New Phytol 142:531–538

    Article  Google Scholar 

  • Brundrett M, Melville L, Peterson L (1994) Practical methods in mycorrhiza research. Mycologue, Waterloo

  • Chabot S, Bécard G, Piché Y (1992) Life cycle of Glomus intraradix in root organ culture. Mycologia 84:315–321

    Google Scholar 

  • Das P, Samantaray S, Rout GR (1997) Studies on cadmium toxicity in plants: a review. Environ Pollut 98:29–36

    Article  CAS  PubMed  Google Scholar 

  • Declerck S, D’or D, Cranenbrouck S, Le Boulengé E (2001) Modelling the sporulation dynamics of arbuscular mycorrhizal fungi in monoxenic culture. Mycorrhiza 11:225–230

    Article  Google Scholar 

  • Díaz G, Azcón-Aguilar C, Honrubia M (1996) Influence of arbuscular mycorrhizae on heavy metal (Zn and Pb) uptake and growth of Lygeum spartum and Anthyllis cytisoides. Plant Soil 180:241–249

    Google Scholar 

  • Doner LW, Bécard G (1991) Solubilization of gellan gels by chelation of cations. Biotechnol Tech 5:25–28

    CAS  Google Scholar 

  • Dueck TA, Visser P, Ernst WHO, Schat H (1986) Vesicular-arbuscular mycorrhizae decrease zinc-toxicity to grasses growing in zinc-polluted soil. Soil Biol Biochem 18:331–333

    Article  Google Scholar 

  • Fortin JA, Bécard G, Declerck S, Dalpé Y, St-Arnaud M, Coughlan AP, Piché Y (2002) Arbuscular mycorrhiza on root-organ cultures. Can J Bot 80:1–20

    Article  CAS  Google Scholar 

  • Gildon A Tinker PB (1983) Interactions of vesicular-arbuscular mycorrhizal infection and heavy metals in plants. I. The effects of heavy metals on the development of vesicular-arbuscular mycorrhizas. New Phytol 95:247–261

    CAS  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Google Scholar 

  • Gonzalez-Chavez C, D’Haen J, Vangronsveld J, Dodd JC (2002) Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant Soil 240:287–297

    Article  CAS  Google Scholar 

  • Griffioen WAJ, Ernst WHO (1989) The role of VA mycorrhiza in the heavy metal tolerance of Agrostis capillaris L.. Agric Ecosyst Environ 29:173–177

    Article  Google Scholar 

  • Hart MM, Reader RJ (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344

    Article  Google Scholar 

  • Heggo A, Angle JS (1990) Effects of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybeans. Soil Biol Biochem 22:865–869

    Article  CAS  Google Scholar 

  • Hetrick BAD, Wilson GWT, Figge DAH (1994) The influence of mycorrhizal symbiosis and fertilizer amendments on establishment of vegetation in heavy metal mine spoils. Environ Pollut 86:171–179

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt U, Kladorf M, Bothe H (1999) The zinc violet and its colonization by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–717

    CAS  Google Scholar 

  • Jacquot E, van Tuinen D, Gianinazzi S, Gianinazzi-Pearson V (2000) Monitoring species of arbuscular mycorrhizal fungi in planta and in soil by nested PCR: application to the study of the impact of sewage sludge. Plant Soil 223:179–188

    Article  Google Scholar 

  • Jansa J, Mozafar A, Banke S, McDonald A, Frossard E (2002) Intra- and intersporal diversity of ITS rDNA sequences in Glomus intraradices assessed by cloning and sequencing, and by SSCP analysis. Mycol Res 106:670–681

    Article  CAS  Google Scholar 

  • Joner EJ, Leyval C (2001) Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculation regimes. Biol Fertil Soils 33:351–357

    Article  CAS  Google Scholar 

  • Joner EJ, Briones R, Leyval C (2000) Metal-binding capacity of arbuscular mycorrhizal mycelium. Plant Soil 226:227–234

    Article  CAS  Google Scholar 

  • Karandashov V, Kuzovkina I, Hawkins HJ, George E (2000) Growth and sporulation of the arbuscular mycorrhizal fungus Glomus caledonium in dual culture with transformed carrot roots. Mycorrhiza 10:23–28

    Article  CAS  Google Scholar 

  • Klironomos JN, Hart MM (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181–184

    Article  PubMed  Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–505

    Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Malcová R, Gryndler M (2003) Amelioration of Pb and Mn toxicity to arbuscular mycorrhizal fungus Glomus intraradices by maize root exudates. Biol Planta 47:297–299

    Article  Google Scholar 

  • Malcová R, Rydlová J, Vosátka M (2003) Metal-free cultivation of Glomus sp. BEG140 isolated from Mn-contaminated soil reduces tolerance to Mn. Mycorrhiza 13:151–157

    Article  CAS  PubMed  Google Scholar 

  • Meharg AA, Cairney JWG (2000) Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Adv Ecol Res 30:69–112

    CAS  Google Scholar 

  • Newman EI (1966) A method of estimating the total length of root in a sample. J Appl Ecol 3:139–145

    Google Scholar 

  • Olsson PA, van Aarle IM, Allaway WG, Ashford AE, Rouhier H (2002) Phosphorus effects on metabolic processes in monoxenic arbuscular mycorrhiza cultures. Plant Physiol 130:1162–1171

    Article  CAS  PubMed  Google Scholar 

  • Pawlowska TE, Douds DD Jr, Charvat I (1999) In vitro propagation and life cycle of the arbuscular mycorrhizal fungus Glomus etunicatum. Mycol Res 103:1549–1556

    Article  Google Scholar 

  • Repetto O, Bestel-Corre G, Dumas-Gaudot E, Berta G, Gianinazzi-Pearson V, Gianinazzi S (2003) Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots. New Phytol 157:555–567

    Article  CAS  Google Scholar 

  • Rivera-Becerril F, Calantzis C, Turnau K, Caussanel J-P, Belimov AA, Gianinazzi S, Strasser RJ, Gianinazzi-Pearson V (2002) Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot 53:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Rufyikiri G, Thiry Y, Declerck S (2002) Uranium uptake and translocation by the arbuscular mycorrhizal fungus, Glomus intraradices, under root-organ culture conditions. New Phytol 156:275–281

    Article  CAS  Google Scholar 

  • Schachtschabel P, Blume H-P, Brümmer G, Hartge K-H, Schwermann U (1992) Lehrbuch der Bodenkunde. Ferdinand Enke, Stuttgart

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48:523–544

    Article  CAS  Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1995) Altered growth of Fusarium oxysporum f. sp. chrysanthemi in an in vitro dual culture system with the vesicular arbuscular mycorrhizal fungus Glomus intraradices growing on Daucus carota transformed roots. Mycorrhiza 5:431–438

    Google Scholar 

  • Tiwari P, Adholeya A (2002) In vitro co-culture of two AMF isolates Gigaspora margarita and Glomus intraradices on Ri T-DNA transformed roots. FEMS Microbiol Lett 206:39–43

    Article  CAS  PubMed  Google Scholar 

  • Turnau K, Kottke I, Oberwinkler F (1993) Element localization in mycorrhizal roots of Pteridium aquilinum (L.) Kuhn collected from experimental plots treated with cadmium dust. New Phytol 123:313–324

    CAS  Google Scholar 

  • Villegas J, Fortin JA (2001) Phosphorus solubilization and pH changes as a result of the interactions between soil bacteria and arbuscular mycorrhizal fungi on a medium containing NO3 as nitrogen source. Can J Bot 80:571–576

    Article  Google Scholar 

  • Weissenhorn I, Leyval C, Berthelin J (1993) Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy-metal polluted soils. Plant Soil 157:247–256

    CAS  Google Scholar 

  • Weissenhorn I, Leyval C, Belgy G, Berthelin J (1995) Arbuscular mycorrhizal contribution to heavy metal uptake by maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza 5:245–251

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the 5th EU Framework project Genes and genetic engineering for arbuscular mycorrhiza technology and applications in sustainable agriculture (GENOMYCA), QLK-CT-2000-01319. The appointment of M. Janoušková was partly financed by Grant Agency of the Czech Republic, grant No. 526/02/0293.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Janoušková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janoušková, M., Vosátka, M. Response to cadmium of Daucus carota hairy roots dual cultures with Glomus intraradices or Gigaspora margarita. Mycorrhiza 15, 217–224 (2005). https://doi.org/10.1007/s00572-004-0325-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-004-0325-2

Keywords

Navigation