Advertisement

Mycorrhiza

, Volume 14, Issue 3, pp 185–192 | Cite as

Impact of two fluorescent pseudomonads and an arbuscular mycorrhizal fungus on tomato plant growth, root architecture and P acquisition

  • Elisa Gamalero
  • Antonio Trotta
  • Nadia Massa
  • Andrea Copetta
  • Maria Giovanna Martinotti
  • Graziella Berta
Original Paper

Abstract

The ability of fluorescent pseudomonads and arbuscular mycorrhizal fungi (AMF) to promote plant growth is well documented but knowledge of the impact of pseudomonad-mycorrhiza mixed inocula on root architecture is scanty. In the present work, growth and root architecture of tomato plants (Lycopersicon esculentum Mill. cv. Guadalete), inoculated or not with Pseudomonas fluorescens 92rk and P190r and/or the AMF Glomus mosseae BEG12, were evaluated by measuring shoot and root fresh weight and by analysing morphometric parameters of the root system. The influence of the microorganisms on phosphorus (P) acquisition was assayed as total P accumulated in leaves of plants inoculated or not with the three microorganisms. The two bacterial strains and the AMF, alone or in combination, promoted plant growth. P. fluorescens 92rk and G. mosseae BEG12 when co-inoculated had a synergistic effect on root fresh weight. Moreover, co-inoculation of the three microorganisms synergistically increased plant growth compared with singly inoculated plants. Both the fluorescent pseudomonads and the myco-symbiont, depending on the inoculum combination, strongly affected root architecture. P. fluorescens 92rk increased mycorrhizal colonization, suggesting that this strain is a mycorrhization helper bacterium. Finally, the bacterial strains and the AMF, alone or in combination, improved plant mineral nutrition by increasing leaf P content. These results support the potential use of fluorescent pseudomonads and AMF as mixed inoculants for tomato and suggest that improved tomato growth could be related to the increase in P acquisition.

Keywords

Pseudomonas fluorescens Glomus mosseae Mixed inoculum Root architecture Phosphorus acquisition 

Notes

Acknowledgements

We wish to thank Dr. Guido Lingua for critical reading of the paper, and Dr. Lorena Avidano and Dr. Barbara Pivato for technical support and stimulating discussions. We are grateful to Dr. Alberto Escande (Instituto Nacional de Tecnologia Agropecuaria, Balcarce, Argentina) for providing the P. fluorescens strain P190. This work was supported by MIUR.

References

  1. Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil 192:71–79CrossRefGoogle Scholar
  2. Azcon-Aguilar C, Jaizme-Vega MC, Calvet C (2002) The contribution of arbuscular mycorrhizal fungi to the control of soil borne plant pathogens. In: Gianinazzi S, Schuepp H (eds) Mycorrhizal technology: from genes to bioproducts — achievement and hurdles in arbuscular mycorrhizal research. Birkhäuser, Basel, pp187–198Google Scholar
  3. Bakker PAHM, Lamers JG, Bakker AW, Marugg JD, Weisbeek PJ, Shippers B (1987) The role of siderophores in potato tuber yield increase by Pseudomonas putida in a short rotation of potato. Neth J Plant Pathol 92:249–256Google Scholar
  4. Barea JM, Azcón-Aguilar C, Azcón R (1997) Interactions between mycorrhizal fungi and rhizosphere microorganisms within the context of sustainable soil-plant systems. In: Gange AC, Brown VK (eds) Multitrophic interactions in terrestrial systems. Blackwell, Oxford, pp 65–77Google Scholar
  5. Berta G, Fusconi A, Hooker JE (2002) Arbuscular mycorrhizal modifications to plant root systems. In: Gianinazzi S, Schuepp H (eds) Mycorrhizal technology: from genes to bioproducts — achievement and hurdles in arbuscular mycorrhizal research. Birkhäuser, Basel, pp 71–101Google Scholar
  6. Bucki PM, Laich FS, Melegari AL, Escande A (1998) Mal de las almácigas en berenjena (Solanum melongena L.): aislamiento y selección de agentes causales y de microorganismos para el control biológico. Fitopatol 33:108–115Google Scholar
  7. Chiarini L, Bevivino A, Tabacchioni S, Dalmastri C (1998) Inoculation of Burkholderia cepacia, Pseudomonas fluorescens and Enterobacter sp. on Sorghum bicolor: root colonization and plant growth promotion of dual strain inocula. Soil Biol Biochem 30:81–87CrossRefGoogle Scholar
  8. Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutr 23:867–902Google Scholar
  9. Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation patterns of root tissues by Phytophthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato. Plant Soil 185:223–232Google Scholar
  10. Edwards SG, Young JPW, Fitter AH (1998) Interactions between Pseudomonas fluorescens biocontrol agents and Glomus mosseae, an arbuscular mycorrhizal fungus, within the rhizosphere. FEMS Microbiol Lett 166:297–303CrossRefGoogle Scholar
  11. Frey-Klett P, Pierrat JC, Garbaye J (1997) Location and survival of mycorrhiza helper Pseudomonas fluorescens during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglas fir. Appl Environ Microbiol 63:139–144Google Scholar
  12. Galleguillos C, Aguirre C, Barea JM, Azcon R (2000) Growth promoting effect of two Sinorhizobium meliloti strains (a wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi. Plant Sci 159:57–63CrossRefPubMedGoogle Scholar
  13. Gamalero E, Martinotti MG, Trotta A, Lemanceau P, Berta G (2002) Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol 155:293–300CrossRefGoogle Scholar
  14. Gamalero E, Fracchia L, Cavaletto M, Garbaye J, Frey-Klett P, Varese GC, Martinotti MG (2003) Characterization of functional traits of two fluorescent pseudomonads isolated from basidiomes of ectomycorrhizal fungi. Soil Biol Biochem 35:55–65CrossRefGoogle Scholar
  15. Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210Google Scholar
  16. Germida JJ, Walley FL (1996) Plant growth promoting rhizobacteria alter rooting patterns and arbuscular mycorrhizal fungi colonization of field-grown spring wheat. Biol Fertil Soils 23:113–120Google Scholar
  17. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117Google Scholar
  18. Hiltner L (1904) Über neuere Erfahrungen und Problem auf dem Gebiet der Bodenbakteriologie und unter besonderer Berucksichtigung der Grundungung und Brache. Arb Dtsch Landwirtsch Ges 98:59–78Google Scholar
  19. Hofer RM (1996) Root hairs. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half. Dekker, New York, pp 111–126Google Scholar
  20. Kapulnik Y (1996) Plant growth promotion by rhizosphere bacteria. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots. The hidden half. Dekker, New York, pp 769–781Google Scholar
  21. King EO, Ward MK, Raney DE (1954) Two simple media for the demonstration of pyocianin and fluorescin. J Lab Clin Med 44:301–307Google Scholar
  22. Kravchenko LV, Azarova TS, Leonova-Erko EI, Shaposhnikov AI, Makarova NM, Tichonovich IA (2003) Root exudates of tomato plants and their effect on the growth and antifungal activity of Pseudomonas strains. Microbiology 72:37–41CrossRefGoogle Scholar
  23. Lifschitz R, Klopper JW, Kozlowski M, Simonson C, Carlston J, Tipping EM, Zaleska I (1987) Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can J Microbiol 33:390–395Google Scholar
  24. Loper JE, Haack C, Schroth MN (1985) Population dynamics of soil pseudomonads in the rhizosphere of potato (Solanum tuberosum L.). Appl Environ Microbiol 49:416–422Google Scholar
  25. Lugtenberg BJJ, Dekkers LC (1999) What makes Pseudomonas bacteria rhizosphere competent? Environ Microbiol 1:9–13CrossRefPubMedGoogle Scholar
  26. Lynch JM, Whipps JM (1990) Substrate flow in the rhizosphere. Plant Soil 129:1–10Google Scholar
  27. Mazzola M (1999) The potential use of natural and genetically engineered fluorescent Pseudomonas spp. as biological control agents. In: Subba Rao NS, Dommergues YR (eds) Microbial interactions in agriculture and forestry, vol 1. Science, Plymouth, pp 195–218Google Scholar
  28. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.Google Scholar
  29. Paulitz TC, Linderman RG (1989) Interactions between fluorescent pseudomonads and VA mycorrhizal fungi. New Phytol 113:37–45Google Scholar
  30. Probanza A, Lucas Garcia JA, Ruiz-Palomino M, Ramos B, Gutierrez-Mañero FJ (2002) Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT5106 and B. pumilus CECT 5105). Appl Soil Ecol 20:75–84Google Scholar
  31. Ravnskov S, Jakobsen I (1995) Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytol 129:611–618Google Scholar
  32. Ravnskov S, Jakobsen I (1999) Effects of Pseudomonas fluorescens DF57 on growth and P uptake of two arbuscular mycorrhizal fungi in symbiosis with cucumber. Mycorrhiza 8:329–334CrossRefGoogle Scholar
  33. Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech Adv 17:319–339CrossRefGoogle Scholar
  34. Singh S, Kapoor KK (1998) Effects of inoculation of phosphate-solubilizing microorganisms and an arbuscular mycorrhizal fungus on mungbean grown under natural soil conditions. Mycorrhiza 7:249–253CrossRefGoogle Scholar
  35. Smith SE, Read DJ (1997) Genetic, cellular and molecular interactions in the establishment of VA mycorrhizas. In: Smith SE, Read DJ (eds) Mycorrhizal symbiosis. Academic, New York, pp 9–33Google Scholar
  36. Toro M, Azcón R, Barea JM (1997) Improvement of arbuscular development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412Google Scholar
  37. Trotta A, Carminati C, Schelembaum L, Scannerini S, Fusconi A, Berta G (1991) Correlation between root morphogenesis, VA mycorrhizal infection and phosphorus nutrition. In: McMichael BL, Persson H (eds) Plant roots and their environment. Elsevier, Amsterdam, pp 333–389Google Scholar
  38. Trotta A, Varese GC, Gnavi E, Fusconi E, Sampo' S, Berta G (1996) Interaction between the soil-borne pathogen Phythophthora parasitica var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209Google Scholar
  39. Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorrhization VA d'un système radiculaire. Recherche de méthodes d'estimation ayant une signification fonctionnelle. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 217–221Google Scholar
  40. Turnau K, Haselwandter K (2002) Arbuscular mycorrhizal fungi, an essential component of soil microflora in ecosystem restoration. In: Gianinazzi S, Schuepp H (eds) Mycorrhizal technology: from genes to bioproducts. Birkhäuser, Basel, pp 137–149Google Scholar
  41. Van Veen JA, Van Overbeek LS, Van Elsas JD (1997) Fate and activity of microorganisms introduced in soil. Microbiol Mol Biol Rev 61:121–135PubMedGoogle Scholar
  42. Varese GC, Portinaro S, Trotta A, Scannerini S, Luppi-Mosca AM, Martinotti MG (1996) Bacteria associated with Suillus grevillei sporocarps and ectomycorrhizae and their effect on in vitro growth of the mycobiont. Symbiosis 21:129–147Google Scholar
  43. Walley FL, Germida JJ (1997) Response of spring wheat (Triticum aestivum) to interactions between Pseudomonas species and Glomus clarum NT4. Biol Fertil Soils 24:365–371CrossRefGoogle Scholar
  44. Weller DM (1988) Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407Google Scholar

Copyright information

© Springer-Verlag 2003

Authors and Affiliations

  • Elisa Gamalero
    • 1
  • Antonio Trotta
    • 2
  • Nadia Massa
    • 1
  • Andrea Copetta
    • 1
  • Maria Giovanna Martinotti
    • 3
  • Graziella Berta
    • 1
  1. 1.University of Eastern Piedmont "Amedeo Avogadro"Department of Science and Advanced Technology AlessandriaItaly
  2. 2.Department of Plant BiologyUniversity of Turin TurinItaly
  3. 3.Department of Chemical Alimentary Pharmaceutical and Pharmacological ScienceUniversity of Eastern PiedmontNovaraItaly

Personalised recommendations