Skip to main content
Log in

Effects of H2O2 on Microfilaments of Cultured Endothelial Cells

  • Published:
International Journal of Angiology

Abstract

Hydrogen peroxide (H2O2) is an important granulocyte derived mediator of endothelial cell injury. Alterations of the microfilaments system (especially of actin) in endothelial cells may be relevant for the pathogenesis of vascular leakage. In the study presented effects of H2O2 on actin monomers (G-actin) and filamentous actin (F-actin) were examined in cultured pulmonary artery endothelial cells. Phalloidin which blocks actin depolymerization by inhibiting actin monomer dissociation and C. Botulinum C2 toxin which ADP-ribosylates G-actin thereby inhibiting actin polymerization were used as tools for the study of H2O2–related actin alterations. Exposure of cells to 2 mM H2O2 resulted in a biphasic change of F-actin with an early decrease (15 min) and a subsequent doubling (120 min) paralleled by an inverse G-actin pattern. In endothelial cells with a 20% reduction of F-actin-brought about by preincubation with C2-toxin for 150 min- H2O2-related actin polymerization was unimpaired. In cells with completely dissolved F-actin (Bot. C2-toxin for 210 min) no actin polymerization occurred upon H2O2 application. Phalloidin blocked the early H2O2-induced F-actin decrease and slowed down late actin polymerization. Effects of H2O2 on endothelial actin were abolished in the presence of scavengers of oxygen metabolites (catalase) and by the poly (ADP) ribose-polymerase inhibitor aminobenzamid. The data presented are compatible with the concept that H2O2 stimulates actin turnover and actin nucleation which—in the long run—result in H2O2 related formation of new actin filaments. This process was blocked by oxygen metabolite scavengers and by inhibition of DNA strand break repair mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. K Aktories Th Ankerbauer B Schering KH Jakobs (1986) ArticleTitleADP-ribosylation of platelet actin by botulinum C2-toxin. Eur J Biochem 161 155–162 Occurrence Handle1:CAS:528:DyaL2sXhsFKm Occurrence Handle3096731

    CAS  PubMed  Google Scholar 

  2. K Aktories M Bärmann I Oshiki S Tsuyama KH Jakobs E Habermann (1986) ArticleTitleBotulinum C2-toxin ADP-ribosylates actin. Nature 322 390–392

    Google Scholar 

  3. MM Bradford (1976) ArticleTitleA rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72 248–254 Occurrence Handle10.1006/abio.1976.9999 Occurrence Handle1:CAS:528:DyaE28XksVehtrY%3D Occurrence Handle942051

    Article  CAS  PubMed  Google Scholar 

  4. PG Cabaud F Wroblewski (1958) ArticleTitleColorimetric measurements of lactic dehydrogenase activity of body fluid. Am J Clin Pathol 30 234–238 Occurrence Handle1:CAS:528:DyaG1cXhtFCnt7o%3D

    CAS  Google Scholar 

  5. LM Coluccio LG Tinley (1984) ArticleTitlePhalloidin enhances actin assembly by preventing monomer dissociation. J Cell Biol 99 529–535 Occurrence Handle1:CAS:528:DyaL2cXls1GitLY%3D Occurrence Handle6746738

    CAS  PubMed  Google Scholar 

  6. P Dancker L Löw W Hasselbach Th Wieland (1975) ArticleTitleInteraction of actin with phalloidin: Polymerization and stabilization of F-actin. Biochem Biophys Acta 400 407–414 Occurrence Handle10.1016/0005-2795(75)90196-8 Occurrence Handle1:CAS:528:DyaE2MXlsFyrsLY%3D Occurrence Handle126084

    Article  CAS  PubMed  Google Scholar 

  7. JE Estes LA Selden LC Gershman (1981) ArticleTitleMechanism of action of phalloidin on the polymerization of muscle actin. Bio chem 20 708–712 Occurrence Handle1:CAS:528:DyaL3MXhtlelurg%3D

    CAS  Google Scholar 

  8. BA Freeman JD Carpo (1982) ArticleTitleBiology of disease: Free radicals and tissue injury. Lab Invest 47 413–426

    Google Scholar 

  9. JM Harlan PD Killen LA Harker GE Striker (1981) ArticleTitleNeutrophil mediated endothelial injury in vitro. J Clin Invest 68 1394–1403 Occurrence Handle1:CAS:528:DyaL38XmslSrtw%3D%3D Occurrence Handle7033282

    CAS  PubMed  Google Scholar 

  10. DB Hinshaw BC Armstrong JM Burger TF Beals PA Hyslop (1988) ArticleTitleATP and microfilaments in cellular oxidant injury. Am J Path 132 479–488 Occurrence Handle1:CAS:528:DyaL1cXlvVyhurk%3D Occurrence Handle3414780

    CAS  PubMed  Google Scholar 

  11. DB Hinshaw LA Sklar B Bohl IU Schraufstätter PA Hyslop MW Rossi RG Spragg CG Cochrane (1986) ArticleTitleCytoskeletal and morphologic impact of cellular oxidant injury. Am J Path 123 454–464 Occurrence Handle1:STN:280:BimB3sblsVQ%3D Occurrence Handle3717299

    CAS  PubMed  Google Scholar 

  12. ED Korn (1982) ArticleTitleActin polymerization and 1 its regulation by proteins from nonmuscule cells. Phys Rew 62 IssueID2 672–737 Occurrence Handle1:CAS:528:DyaL38XhvFGitb8%3D

    CAS  Google Scholar 

  13. I Oshiki M Iwasaki G Sakaguchi (1980) ArticleTitlePurification and characterization of two components of botulinum C2-toxin. Infect Immun 30 366–673

    Google Scholar 

  14. M Miki JA Barden CG dos Remedios L Phillips BD Hamply (1987) ArticleTitleInteraction of phalloidin with chemically modified actin. Eur J Biochem 165 125–130 Occurrence Handle1:CAS:528:DyaL2sXktF2ksrk%3D Occurrence Handle2952502

    CAS  PubMed  Google Scholar 

  15. PG Phillips PJ Higgins AB Malik MF Tsan (1988) ArticleTitleEffect of hyperoxia on the cytoarchitecture of cultured endothelial cells. Am J Path 132 59–72 Occurrence Handle1:STN:280:BieB2sbmvFU%3D Occurrence Handle3394802

    CAS  PubMed  Google Scholar 

  16. TD Pollard (1986) ArticleTitleActin and actin-binding proteins. A critical evaluation of mechanisms and functions. Ann Rev Biochem 55 987–1035 Occurrence Handle1:CAS:528:DyaL28XlsVyhtr8%3D Occurrence Handle3527055

    CAS  PubMed  Google Scholar 

  17. G Raghu L Striker J Harlan A Gowen G Striker (1986) ArticleTitleCytoskeletal changes as an early event in hydrogen peroxide-induced cell injury: A study in A 549 cells. Br J Exp Path 67 105–112 Occurrence Handle1:CAS:528:DyaL28Xht1Olu7Y%3D

    CAS  Google Scholar 

  18. IU Schraufstätter PA Hyslop DB Hinshaw RG Spragg LA Sklar CG Cochrane (1986) ArticleTitleHydrogen peroxide-induced injury of cells and its prevention by inhibition of poly (ADP-ribose) polymerase. Med Sciences 83 4908–4912

    Google Scholar 

  19. J Seybold (1994) Das Zytoskelett der Endothelzelle: Regulation der Aktinfilamente unter dem Einfluß von bakteriellen Toxinen und Tumor-Nekrose-Faktor. Giessen Dissertation

    Google Scholar 

  20. WP Shu D Wang A Stracher (1992) ArticleTitleChemical evidence for the existence of activated G-actin. J Biochem 283 567–573 Occurrence Handle1:CAS:528:DyaK38XitV2qsrs%3D

    CAS  Google Scholar 

  21. PE Stanley SG Williams (1969) ArticleTitleUse of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. L Anal Biochem 29 381–392 Occurrence Handle1:CAS:528:DyaF1MXktVSlu7g%3D

    CAS  Google Scholar 

  22. N Suttorp T Hessz W Seeger A Wilke F Koob F Lutz D Drenckhahn (1988) ArticleTitleBacterial exotoxins and endothelial permeability for water and albumin in vitro. Am J Physiol 255 C368–376 Occurrence Handle3138913

    PubMed  Google Scholar 

  23. N Suttorp M Polley J Seybold H Schnittler W Seeger F Grimminger K Aktories (1991) ArticleTitleAdenosine diphoshate-ribosylation of G-actin by botulinum C2 toxin increases endothelial permeability in vitro. J Clin Invest 87 1575–1584 Occurrence Handle1:CAS:528:DyaK3MXisVGisLc%3D Occurrence Handle2022729

    CAS  PubMed  Google Scholar 

  24. N Suttorp LM Simon (1982) ArticleTitleLung cell oxidant injury. J Clin Invest 70 342–350 Occurrence Handle1:CAS:528:DyaL38XltVGhsLg%3D Occurrence Handle6284800

    CAS  PubMed  Google Scholar 

  25. N Suttorp W Toepfer L Roka (1986) ArticleTitleAntioxidant defense mechanisms of endothelial cells: Gluthatione redox cycle versus catalase. Am J Phys 251 C671–680 Occurrence Handle1:CAS:528:DyaL2sXhs12gtw%3D%3D

    CAS  Google Scholar 

  26. N Suttorp U Weber T Welsch C Schudt (1993) ArticleTitleRole of phosphodiesterases in the regulation of endothelial permeability in vitro. J Clin Invest 91 1421–1428 Occurrence Handle1:CAS:528:DyaK3sXktVKhsrk%3D Occurrence Handle8386187

    CAS  PubMed  Google Scholar 

  27. N Suttorp S Kästl H Neuhof (1991) ArticleTitleGlutathione redox cycle is an important defense system of endothelial cells against chronic hyperoxia. Lung 169 203–214 Occurrence Handle1:CAS:528:DyaK38XltV2iu7g%3D Occurrence Handle1921473

    CAS  PubMed  Google Scholar 

  28. J Vandekerckhove B Schering M Bärmann K Aktories (1988) ArticleTitleBotulinum C2-toxin ADP-ribosylates cytoplasmic β/γ-actin in Arginine 177. J Biol Cem 263 696–700 Occurrence Handle1:CAS:528:DyaL1cXltV2ktQ%3D%3D

    CAS  Google Scholar 

  29. H Wendel P Dancker (1986) ArticleTitleKinetics of actin depolymerization: influence of ions, temperature, age of actin, cytochalasin B and phalloidin. Biochem Biophys Acta 873 387–396 Occurrence Handle10.1016/0167-4838(86)90088-9 Occurrence Handle1:CAS:528:DyaL2sXhsVygsw%3D%3D Occurrence Handle3756187

    Article  CAS  PubMed  Google Scholar 

  30. E Wulf A Deboben FA Bautz H Faulstich Th Wieland (1979) ArticleTitleFluorescent phallotoxin, a tool for the visualization of cellular actin. Cell Biol 76 4498–4502 Occurrence Handle1:CAS:528:DyaL3cXlsVCltg%3D%3D

    CAS  Google Scholar 

  31. RB Wysolmerski D Lagunoff (1988) ArticleTitleInhibition of endothelial cell retraction by ATP depletion. Am J Path 132 28–37 Occurrence Handle1:CAS:528:DyaL1cXlt1Kktr4%3D Occurrence Handle3394800

    CAS  PubMed  Google Scholar 

  32. K Yoshihara M Tsuyuki A Itaya Y Tanaka T Kamiya (1994) ArticleTitle3-Aminobenzamide, a potent inhibition of poly (ADP-ribose) polymerase, causes a rapid death of HL-60 cells cultured in serum-free medium. J Mol Cell Biochem 135 143–151 Occurrence Handle1:CAS:528:DyaK2cXmsVyhtLw%3D

    CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Aktories, Department of Pharmacology and Toxicology, University Freiburg, for providing C. Botulinum C2-toxin. The technical assistance of S. Tannert-Otto is greatly appreciated. This study was supported by the Deutsche Forschungsgemeinschaft (SFB 547/B2 to N. Suttorp). N. Suttorp is a recipient of a Hermann and Lilly Schilling Professorship.

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Roth, P., Seybold, J., Hehrlein, FW. et al. Effects of H2O2 on Microfilaments of Cultured Endothelial Cells . International Journal of Angiology 12, 62–67 (2003). https://doi.org/10.1007/s00547-003-0684-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00547-003-0684-0

Keywords

Navigation