Skip to main content
Log in

Design and performance analysis of miniaturized dual-band micro-strip antenna loaded with double negative meta-materials

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In recent studies, it is observed that the operating wavelength is much higher even the total size of the radiator is significantly smaller, rectangular patch antennas loaded with meta-materials whose dielectric permittivity and magnetic permeability are both negative can support resonant radiation modes in principle. During the research, it was found that there is an urgent need for reduced power electronic and radio frequency components and micro-strip patch radiators with small size have important functions in current and future wireless applications. In this article, researchers presented a miniaturized dual-band rectangular micro-strip antenna with significant gain and bandwidth. The size reduction is achieved by embedding a double negative (DNG) meta-material structure using a complementary split ring resonator (CSRR) on patch surface and grounding with wide lengthen rectangular shaped slot and four element linear pattern CSRR array as defected ground structure (DGS). The comparative results are shown in terms of size, return losses, gain and bandwidth between the antennas with and without loaded DNG meta-materials. In that performance analysis, the antenna loaded with DNG meta-materials got size shrinkage of 80.45% with respect to a conventional micro-strip antenna. It is fabricated and tested. The antenna is resonating at 3.49 GHz and 5.23 GHz with in the impedance bandwidths of 3.43–3.56 GHz and 4.93–5.75 GHz respectively. Measured results are compared with simulated results and also compared with the previous works presented in the literature. The introduced antenna in this article can be suitable candidate for 5G, Amateur satellite, WLAN and World-wide interoperability for microwave access applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

References

  • Alhawari ARH, Ismail A, Mahdi MA, Abdullah RSAR (2011) Miniaturized ultra-wideband antenna using microstrip negative index metamaterial. Electromagn 3:404–418

    Article  Google Scholar 

  • Alrawashdeh RS, Huang Y, Kod M, Sajak AAB (2015) A broadband flexible implantable loop antenna with complementary split ring resonators. IEEE Antennas Wirel Propag Lett 14:1322–1325

    Article  Google Scholar 

  • Bage A, Das S (2016) A compact, Wideband waveguide bandpass filter using complementary loaded split ring resonators. Progress in Electromagnetics Research C 64:51–59

    Article  Google Scholar 

  • Bilotti Filiberto, Alu Andrea, Vengi Lucio (2008) Design of Miniaturized Metamaterial Patch Antenna with mu-Nagative Loading. IEEE Trans Antennas Propagat 56(6):1640

    Article  Google Scholar 

  • Boukarkar A, Lin X-Q, Jiang Y, Yu Y-Q (2017) Miniaturized single-feed multi-band patch antennas. IEEE Trans Antennas Propag 65(2):850–854

    Article  Google Scholar 

  • Caloz C, Sanada A, Itoh T (2004) A novel composite right-/lefthanded coupled-line directional coupler with arbitrary coupling level and broad bandwidth. IEEE Trans Microw Theory Tech. https://doi.org/10.1109/TMTT.2004.823579

    Article  Google Scholar 

  • Chandrasekhararao K, Kavitha A (2020) Circularly polarized dual band micro strip patch antenna design at 28GHZ/38GHZ for 5G cellular communication. Journal of Critical Reviews 7(4):966–973

    Google Scholar 

  • Chen W-S, Wu C-K, Wong K-L (2001) Novel compact circularly polarized square microstrip antenna. IEEE Trans Antennas Propag 49(3):340–342

    Article  Google Scholar 

  • Cheng X, Senior DE, Kim C, Yoon Y-K (2011) A compact omnidirectional self-packaged patch antenna with complementary split-ring resonator loading for wireless endoscope applications. IEEE Antennas Wirel Propag Lett 10:1532–1535

    Article  Google Scholar 

  • Dhar N, Rahman MA, Hossain MA (2020) Design and exploration of functioning of a D-Z shaped SNG multiband metamaterial for L-, S-, and X- bands applications. SN Appl Sci 2:1077. https://doi.org/10.1007/s42452-020-2867-0

  • Dong Y, Togao H, Itoh T (2012) Design and characterization of miniaturized patch antennas loaded with complementary split ring resonator. IEEE Trans Antennas Propag 60(2):772–785

    Article  Google Scholar 

  • Ghosh B, Moinul Haque SK, Mitra D (2011) Miniaturization of slot antennas using slit and strip loading. IEEE Trans. Antennas Propag. 59(10):3922–3927

    Article  Google Scholar 

  • Ha J, Kwon K, Lee Y, Choi J (2012) Hybrid mode wideband patch antenna loaded with a planar metamaterial unit cell. IEEE Trans Antennas Propag 60(2):1143–1147

    Article  Google Scholar 

  • Hansen RC (1981) Fundamental limitations in antennas. Proc IEEE 69:170–182

    Article  Google Scholar 

  • Hou QW, Su YY, Zhao XP (2014) A high gain patch antenna based PN zero permeability metamaterial. Microw Opt Technol Lett 56:1065–1069. https://doi.org/10.1002/mop.28261

    Article  Google Scholar 

  • James JR, Hall PS (1989) Handbook of Microstrip Antennas. Peter Peregrinus, London, U.K.

    Book  Google Scholar 

  • Kalaiarasan K, Kavitha A, Swaminathan JN (2020) “Multiband Antenna with Indoor Applications using Soft Computation Method”, Advances in Intelligent Systems and Computing book series 46–52. Springer

    Google Scholar 

  • Karimzadesh RB, Dadashzadesh G, Geran Kharakhili F (2017) Using of CSRR and its equivalent circuit model in size reduction of microstrip antenna. In: in Proc. Asia-Pacific Microwaves Conf.

  • Kaur J, Khanna R (2014) Development Of Dual-Band Microstrip Patch Antenna For Wlan/Mimo/Wimax/Amsat/Wave Applications. Microwave Optical Technol Lett. https://doi.org/10.1002/mop

    Article  Google Scholar 

  • Kavitha A, Swaminathan JN (2019) Design of flexible textile antenna using FR4, jeans cotton and teflon substrates. Microsyst Technol 25:1311–1320. https://doi.org/10.1007/s00542-018-4068-y

  • Kim J, Yang D (2013) AN ENG ZOR unit cell antenna using spiral inductors with enhanced bandwidth. Microw Opt Technol Lett 55(3):567–571. https://doi.org/10.1002/mop.27382

    Article  Google Scholar 

  • Li M, Lu M, Cui TJ (2008) Novel miniaturized dual-band antenna design using complementary metamaterial. Proc. Int. Workshop on Metamaterials, Nanjing, pp 374–376

    Google Scholar 

  • Li D, Szabó Z, Qing X, Li E-P, Chen ZN (2012) A high gain antenna with an optimized metamaterial inspired superstrate. IEEE Trans Antennas Propag. https://doi.org/10.1109/TAP.2012.2213231

    Article  Google Scholar 

  • Liu W-C, Wu C-M, Chu N-C (2011) A compact low-profile dual-band antenna for WLAN and WAVE applications. Int J Electron Commun 66:467–471

    Article  Google Scholar 

  • Maci S, Gentili GB, Piazzesi P, Salvador C (1995) Dual-band slotloaded patch antenna. Proc Inst Elect Eng Microwave Antennas Propagation 142(3):225–232

    Article  Google Scholar 

  • Mendhe SE, Kosta Y (2014) Gain enhancement and broadband using helical resonating metamaterial superstrate in stacked microstrip patch antenna. Microw Opt Technol. https://doi.org/10.1002/mop.28544

    Article  Google Scholar 

  • Ouedraogo RO, Rothwell EJ, Diaz AR, Chen SY, Temme A, Fuchi K (2010) In situ optimization of metamaterial-inspired loop antennas. IEEE Antennas Wireless Propag Lett 9:75–78

    Article  Google Scholar 

  • Ouedraoya R, Rothwell EJ, Diaz AR, Fuchia K, Temme A (2012) Miniaturization of patch antennas using a metamaterial-inspired technique. IEEE Trans Antennas Propag 60(5):2175–2182

    Article  Google Scholar 

  • Pendry JB, Holden A, Stewart W, Youngs I (1996) Extremely low frequency plasmons in metallic mesostructures. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.76.4773

    Article  Google Scholar 

  • Pendry JB, Holden AJ, Robbins DJ, Stewart W (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microw Theory Tech 47:2075–2084. https://doi.org/10.1109/22.798002

    Article  Google Scholar 

  • Porath R (2000) Theory of miniaturized shorting-post microstrip antennas. IEEE Trans Antennas Propag 48(1):41–47

    Article  Google Scholar 

  • Radiom S, Aliakbarian H, Vandenbosch GAE, Gielen GGE (2009) An effective technique for symmetric planar monopole antenna miniaturization. IEEE Trans Antennas Propag 57(10):2989–2996

    Article  Google Scholar 

  • Rajesh Kumar V, Raghavana S (2014) A compact metamaterial inspired triple-band antenna for reconfigurable WLAN/WiMAX applications. Int. J. Electron. Commun 69:274–280

    Google Scholar 

  • Raval F, Kosta YP, Joshi H (2015) Reduced size patch antenna using complementary split ring resonator as defected ground plane. Int J Electron Commun 69(8):1126–1133

    Article  Google Scholar 

  • Saghanezhad SAH, Atlasbaf Z (2014) Miniaturized dual-band CPW-fed antenna loaded with U-shaped metamaterials. IEEE Antennas Wireless Propag Lett 14:658–661

    Article  Google Scholar 

  • Shelby RA, Smith DR, Schultz S (2001) Experimental verification of a negative index of refraction. Science. https://doi.org/10.1126/science.1058847

    Article  Google Scholar 

  • Shi S, Che W, Yang W, Xue Q (2015) Miniaturized patch antenna with enhanced bandwidth based on signal-interference feed. IEEE Trans Antennas Propag 14:281–284

    Article  Google Scholar 

  • Smith DR, Padilla WJ, Vier D, Nemat-Nasser SC, Schultz S (2000) Composite medium with simultaneously negative permeability and permittivity. Phys Rev. https://doi.org/10.1103/PhysRevLett.84.4184

    Article  Google Scholar 

  • Su L, Naqui J, Mata-Contreras J, Martin F (2016) Modeling and applications of metamaterial transmission lines loaded with pairs of coupled complementary split-ring resonators (CSRRs). IEEE Antennas andWireless Propagation Letters 15:154–157

    Article  Google Scholar 

  • Surendra Kumar P, Chandra Mohan B (2019) Miniaturization of patch antenna using partially loaded non-uniform meta-surfaces with metamaterial. IEEE Antennas Propag Mag. https://doi.org/10.1109/MAP.2018.2883018

    Article  Google Scholar 

  • Taher H (2011) High-performance low-pass filter using complementary square split ring resonators defected ground structure. IET Microwaves Antennas Propag 5(7):771–775

    Article  Google Scholar 

  • Veselago VG (1968) the electrodynamics of substances with simultaneously negative values of ϵ and μ. Soviet Phys Uspekhi. https://doi.org/10.1070/PU1968v010n04ABEH003699

    Article  Google Scholar 

  • Wang C-J, Lee J-J, Huang R-B (2003) Experimental studies of a miniaturized CPW-fed slot antenna with the dual-frequency operation. IEEE Antennas Wireless Propag Lett 2:151–154

    Article  Google Scholar 

  • Wang J, Ning H, Mao L (2012) Acompact reconfigurable bandstop resonator using defected ground structure on coplanar waveguide. IEEE Antennas Wireless Propagation Lett 11:457–459

    Article  Google Scholar 

  • Wheeler HA (1947) Fundamental limitations of small antennas. Proc. IRE 35(1479):1484

    Article  Google Scholar 

  • Xiao S, Shao Z, Wang B-Z, Zhou M-T, Fujise M (2006) Design of low-profile microstrip antenna with enhanced bandwidth and reduced size. IEEE Trans Antennas Propag 54(5):1594–1599

    Article  Google Scholar 

  • Yoo I, Imani MF, Sleasman T, Smith DR (2016) Efficient complementarymetamaterial element for waveguide-fedmetasurface antennas. Opt Express 24(25):28686–28692

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kavitha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raju, K.N., Kavitha, A. & Sekhar, K.C. Design and performance analysis of miniaturized dual-band micro-strip antenna loaded with double negative meta-materials. Microsyst Technol 29, 1029–1038 (2023). https://doi.org/10.1007/s00542-023-05494-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-023-05494-x

Navigation