Skip to main content
Log in

A simulation study verified by experimental test results for frequency response analysis of MEMS comb-drive resonator

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper presents a finite element method (FEM) simulation study for the frequency response analysis of a capacitive comb-drive resonator based on micro-electro-mechanical systems technology. The post-manufactured design parameters of the resonator are firstly determined after the Modified Silicon on Glass fabrication process by using the parameter extraction method. Then, these results are used to form a 3D structure of the fabricated device. Elmer FEM, an open-source finite element software for multi-physics problems, is selected within the several options for the frequency response analysis of the formed 3D structure. During the FEM analysis, an optimized mesh structure is imported to Elmer FEM for the 3D model of the resonator. Next, the frequency response analyses of the resonator are implemented with a flowchart by using Elmer FEM for a fixed AC level and various DC voltages. The parameter extraction outcomes obtained from probe test data and theoretically calculated values are crosschecked with the output of analyses obtained from the Elmer FEM. The FEM simulation results are compared with the experimental data for the frequency response analyses, the motional parameters and the motional current values as well as the rest capacitance. Furthermore, the approximation error of the simulated results of FEM analysis is calculated. Thus, the capacitive microstructures can be designed more precisely by considering expected quality factor value and fabrication-related deviations.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

Download references

Acknowledgements

This study was supported by the Scientific and Technological Research Council of Türkiye (TÜBİTAK) under the grant number 116E231. The authors thank TÜBİTAK for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serdar Tez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tez, S., Kaya, M. A simulation study verified by experimental test results for frequency response analysis of MEMS comb-drive resonator. Microsyst Technol 29, 1281–1293 (2023). https://doi.org/10.1007/s00542-023-05487-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-023-05487-w

Navigation