Skip to main content

Advertisement

Log in

Design and implementation of a new torque controller via FPGA for 6-DOF articulated robots

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This study aims to design a force/torque position-based proportional–integral–derivative (PID) controller based on kinematics of 6-degree-of-freedom (DOF) HIWIN RA605 articulated robot and a field-programmable gate array (FPGA) implementation in high-speed. This novel force/torque controller is appropriate for collaborating with humans or grinding, winding tasks, or any jobs that require force/torque accuracy, and it can even reduce the harm caused by robot-human or robot-robot collisions. A digital algorithm for 6-DOF controller is developed using Verilog HDL and validated with an FPGA to implement several tasks (e.g., encoder counters, digital filter, analog generator, PID controller, and communication) to drive alternating current (AC) servo motors. Digital filter is a crucial algorithm implemented inside the FPGA to minimize the error from encoder signals. A proposed force/torque controller works with an analog voltage rather than a pulse-width modulation as some prior controllers accomplished. The process time by FPGA is 160 ns. The total time response of the control system including hardware response is 82 µs. In this study, the position error at the end effector is around 0.19 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Alabdo A, Pérez J, Garcia GJ, Pomares J, Torres F (2016) FPGA- based architecture for direct visual control robotic systems. Mechatronics 39:204–216

    Article  Google Scholar 

  • Al-Jarrah OM, Zheng YF (1998) Intelligent compliant motion control. IEEE Trans Syst Man Cybern Part b: Cybern 28(1):116–122

    Article  Google Scholar 

  • Araki M (2009) PID control. In: Control systems, robotics, and automation, vol. II. EOLSS Publications, p 79

  • Beal D, Bianchi E, Dozio L, Hughes S, Mantegazza P, Papacharalambous S (2000) RTAI: real-time application interface. Linux J 29(10). https://www.linuxjournal.com/article/3838

  • Becerra VM, Cage CNJ, Harwin WS, Sharkey PM (2004) Hardware retrofit and computed torque control of a PUMA 560 robot updating an industrial manipulator. IEEE Control Syst 24(5):78–82

    Article  Google Scholar 

  • Bonilla I, Mendoza M, Gonzalez-Galvan EJ, Chavez-Olivares C, Loredo-Flores A, Reyes F (2012) Path-tracking maneuvers with industrial robot manipulators using uncalibrated vision and impedance control. IEEE Trans Syst Man Cybern Part c: Appl Rev 42(6):1716–1729

    Article  Google Scholar 

  • Caccavale F, Natale C, Siciliano B, Villani L (2005) Integration for the next generation: embedding force control into industrial robots. IEEE Robot Autom Mag 12(3):53–64

    Article  Google Scholar 

  • Caccavale F, Chiacchio P, Marino A (2008) Six-DOF impedance control of dual-arm cooperative manipulators. IEEE/ASME Trans Mechatron 13(5):1083–4435

    Article  Google Scholar 

  • Chang TN, Cheng B, Sriwilaijaroen P (2006) ‘Motion control firmware for high-speed robotic systems. IEEE Trans Ind Electron 53(5):1713–1722

    Article  Google Scholar 

  • Cheah CC, Wang D (1995) Learning impedance control for robotic manipulators. In Proceedings of 1995 IEEE international conference on robotics and automation, vol. 2, pp. 2150–2155, 21–27 May 1995.

  • Delta Tau Data Systems (PMAC) (1996) PMAC User’s Manual. Delta Tau Inc, Chatsworth

    Google Scholar 

  • El-hamid ASA, Eissa AH (2015) Position control of AC servomotor using internal model control strategy. Int J Eng Innov Res 4(2):277–281

    Google Scholar 

  • Elisabeth E (2014) Basics of rotary encoders: overview and new technologies. In: Machine design magazine, 7 May 2014. https://www.machinedesign.com/automation-iiot/sensors/article/21831757/basics-of-rotary-encodersoverview-and-new-technologies

  • Farooq M, Wang D-B (2007) Implementation of a new PC based controller for a PUMA robot. J Zhejiang Univ Sci A 8(12):1962–1970

    Article  Google Scholar 

  • Ferretti G, Magnani G, Putz P, Rocco P (1996) The structured design of an industrial robot controller. Control Eng Pract 4(2):239–249

    Article  Google Scholar 

  • Gu J, de Silva CW (2004) Development and implementation of a real-time open-architecture control system for industrial robot systems. Eng Appl Artif Intell 17(5):469–483

    Article  Google Scholar 

  • Gu G, Zhu L, Xiong Z, Ding H (2010) Design of a distributed multiaxis motion control system using the IEEE-1394 bus. IEEE Trans Ind Electron 57(12):4209–4218

    Article  Google Scholar 

  • HIWIN Technical Information, “AC Servo motor and D2 drive”.

  • Hong K-S, Choi K-H, Kim J-G, Lee S (2001) A PC-based open robot control system: PC-ORC. Robot Comput-Integr Manuf 17(4):355–365

    Article  Google Scholar 

  • Jung S, Hsia TC (1998) Neural network impedance force control of robot manipulator. IEEE Trans Indus Electron 45(3):451–461

    Article  Google Scholar 

  • Jung S, Hsia TC, Bonitz RG (2004) Force tracking impedance control of robot manipulators under unknown environment. IEEE Trans Control Syst Technol 12(3):474–483

    Article  Google Scholar 

  • Kung Y-S, Fung R-F, Tai T-Y (2009) ‘Realization of a motion control IC for X-Y table based on novel FPGA technology.’ IEEE Trans Ind Electron 56(1):43–53

    Article  Google Scholar 

  • Liandong P, Xinhan H, Arif M (2004) A PC-based open architecture controller for robot. Inf Technol J 3(3):296–302

    Article  Google Scholar 

  • Macchelli A, Melchiorri C (2002) A real-time control system for industrial robots and control applications based on real-time Linux. IFAC Proc 35(1):55–60

    Article  Google Scholar 

  • Martínez-Prado MA, Rodríguez-Reséndiz J, Goméz-Loenzo RA, Herrera-Ruiz G, Franco-Gasca LA (2018) An FPGA-based open architecture industrial robot controller. IEEE Access 6:13407–13417. https://doi.org/10.1109/ACCESS.2018.2797803

    Article  Google Scholar 

  • Monmasson E, Idkhajine L, Cirstea M, Bahri I, Tisan A, Naouar MW (2011) ‘FPGAs in industrial control applications.’ IEEE Trans Ind Informat 7(2):224–243

    Article  Google Scholar 

  • Nilsson K, Johansson R (1999) Integrated architecture for industrial robot programming and control. Robot Auto Syst 29(4):205–226

    Article  Google Scholar 

  • Patel RV, Jayender J, Shadpey F (2009) A robust position and force control strategy for 7-DOF redundant manipulators. IEEE/ASME Trans Mechatron 14(5):575–589

    Article  Google Scholar 

  • Putz P, Elfving A (1992) A development methodology for space A&R control systems. Automatic control in aerospace. Elsevier, Amsterdam, pp 363–368

    Google Scholar 

  • Sampaio RC, Motta JMST, Llanos CH (2017) An FPGA-based controller design for a five degrees of freedom robot for repairing hydraulic turbine blades. J Brazilian Soc Mech Sci Eng 39(8):3121–3136

    Article  Google Scholar 

  • Shao X, Sun D (2007) Development of a new robot controller architecture with FPGA-based IC design for improved high-speed performance. IEEE Trans Ind Informat 3(4):312–321

    Article  Google Scholar 

  • Shimano B, Geschke C, Spalding C (1984) VAL-II: a new robot control system for automatic manufacturing. In: Proceedings. 1984 IEEE international conference on robotics and automation, Atlanta, GA, USA. pp. 278–292. https://doi.org/10.1109/ROBOT.1984.1087187.

  • Siciliano B, Villani L (2001) Robot force control. Kluwer Academic Publishers, Boston

    MATH  Google Scholar 

  • Sperling W, Lutz P (1997) Designing applications for an OSACA control. In: International Mechanical Engineering Congress & Exposition, pp. 16–21.

  • Tan-Phat P, Chao P. C.-P., Zih-Wei H (2021) FPGA-based implementation of torque controller for 6-DOF articulated robots. In: ASME 2021 30th Conference on Information Storage and Processing Systems. 02-Jun-2021. https://doi.org/10.1115/ISPS2021-65255.

  • Titov V, Shardyko I, Isaenko S (2014) Force-torque control implementation for 2 DoF manipulator. Procedia Eng 69:1232–1241. https://doi.org/10.1016/j.proeng.2014.03.114

    Article  Google Scholar 

  • C. C. Tsai, P. R. Deng, C. C. Chan, C. A. Lin, “Fast Position and Posture Control of an Anthropomorphous 7 DOF Dual-Arm Mobile Robot,” Proc. of 2013 CACS Intern. Automatic Control Conf., Sun-Moon Lake, Nantou, Taiwan, pp.227–232, Dec. 2–4, 2013.

  • Tsuji T, Ito K (1996) Neural network learning of robot arm impedance in operational space. IEEE Trans Syst Man Cybern B Cybern 26(2):290–298

    Article  Google Scholar 

  • Visioli A, Legnani G (2002) On the trajectory tracking control of industrial SCARA robot manipulators. IEEE Trans Ind Electron 49(1):224–232

    Article  Google Scholar 

  • Zeng G, Hemami A (1997) An overview of robot force control. Robotica 15(5):473–482

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Minister of Science and Technology under 109-2221-E-009-163, 109-2622-8-009-018-TE1, 110-2622-8-009 -011 -TE1, 110-2223-E-A49-001- and 109-2622-E-009-027-. And the authors would like to acknowledge chip fabrication support provided by Taiwan Semiconductor Research Institute (TSRI), Taiwan, R. O. C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul C.-P. Chao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phan, TP., Chao, P.CP. & Huang, ZW. Design and implementation of a new torque controller via FPGA for 6-DOF articulated robots. Microsyst Technol 28, 2259–2276 (2022). https://doi.org/10.1007/s00542-022-05292-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-022-05292-x

Navigation