Skip to main content
Log in

Stress-driven nonlocal Timoshenko beam model for buckling analysis of carbon nanotubes constrained by surface van der Waals interactions

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this work, the stress-driven nonlocal integral elasticity model is developed for the size-dependent buckling analysis of single-walled carbon nanotubes (SWCNT) in an array constrained by surface van der Waals (vdW) interactions. Using the Lennard–Jones (LJ) potential and Gaussian quadrature method, the vdW force of the continuum model of parallel adjacent CNTs is calculated. According to Hooke's law, the nonlinear vdW interaction is equivalent to a spring constant. Based on the stress-driven nonlocal model and Timoshenko beam theory, the governing equations and the natural boundary conditions of the CNT are derived using Hamilton's principle. Two extra constitutive boundary conditions are generated by the transformation of the Fredholm-type integral constitutive equation into an equivalence of a differential form. Using the Laplace transform technique and the eigenvalue method, the axial critical buckling loads of an SWCNT are analytically solved and compared with the results without surface vdW interaction under pre-pressure processors. In numerical simulations, the influences of the nonlocal elastic parameter, length-to-radii ratio, and type of the SWCNT on the critical buckling load are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akbas SD (2019) Axially forced vibration analysis of cracked a nanorod. J Comput Appl Mech 50:63–68

    Google Scholar 

  • Akbas SD (2020) Modal analysis of viscoelastic nanorods under an axially harmonic load. Adv Nano Res 8:277–282

    Google Scholar 

  • Alimoradzadeh M, Akbas SD (2021) Superharmonic and subharmonic resonances of atomic force microscope subjected to crack failure mode based on the modified couple stress theory. Eur Phys J plus 136:536

    Article  Google Scholar 

  • Aradhya SV, Garimella SV, Fisher TS (2008) Electrothermal bonding of carbon nanotubes to glass. J Electrochem Soc 155:K161–K165

    Article  Google Scholar 

  • Bai Y, Zhang R, Ye X, Zhu Z, Xie H, Shen B, Cai D, Liu B, Zhang C, Jia Z, Zhang S, Li X, Wei F (2018) Carbon nanotube bundles with tensile strength over 80 GPa. Nat Nanotechnol 13:589–595

    Article  Google Scholar 

  • Bai Y, Yue H, Wang J, Shen B, Sun S, Wang S, Wang H, Li X, Xu Z, Zhang R, Wei F (2020) Super-durable ultralong carbon nanotubes. Science 369:1104–1106

    Article  Google Scholar 

  • Barretta R, Canadija M, Luciano R, de Sciarra FM (2018a) Stress-driven modeling of nonlocal thermoelastic behavior of nanobeams. Int J Eng Sci 126:53–67

    Article  MathSciNet  MATH  Google Scholar 

  • Barretta R, Luciano R, de Sciarra FM, Ruta G (2018b) Stress-driven nonlocal integral model for Timoshenko elastic nano-beams. Eur J Mech A-Solid 72:275–286

    Article  MathSciNet  MATH  Google Scholar 

  • Barretta R, Canadija M, de Sciarra FM (2019a) Nonlocal integral thermoelasticity: a thermodynamic framework for functionally graded beams. Compos Struct 225:111104

    Article  Google Scholar 

  • Barretta R, Faghidian SA, Luciano R (2019b) Longitudinal vibrations of nano-rods by stress-driven integral elasticity. Mech Adv Mater Struc 26:1307–1315

    Article  Google Scholar 

  • Benguediab S, Tounsi A, Zidour M, Semmah A (2014) Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes. Compos Pt B-Eng 57:21–24

    Article  Google Scholar 

  • Bensattalah T, Hamidi A, Bouakkaz K, Zidour M, Daouadji TH (2020) Critical buckling load of triple-walled carbon nanotube based on nonlocal elasticity theory. J Nano Res 62:108–119

    Article  Google Scholar 

  • Buehler MJ, Kong Y, Gao HJ (2004) Deformation mechanisms of very long single-wall carbon nanotubes subject to compressive loading. J Eng Mater Technol-Trans ASME 126:245–249

    Article  Google Scholar 

  • Buldum A (2014) Adhesion and friction characteristics of carbon nanotube arrays. Nanotechnology 25:345704

    Article  Google Scholar 

  • Cao CH, Reiner A, Chung CH, Chang SH, Kao I, Kukta RV, Korach CS (2011) Buckling initiation and displacement dependence in compression of vertically aligned carbon nanotube arrays. Carbon 49:3190–3199

    Article  Google Scholar 

  • Ceballes S, Abdelkefi A (2020) Observations on the general nonlocal theory applied to axially loaded nanobeams. Microsyst Technol 27:739–761

    Article  Google Scholar 

  • Civalek O, Akbas SD, Akgoz B, Dastjerdi S (2021) Forced vibration analysis of composite beams reinforced by carbon nanotubes. Nanomaterials 11:571

    Article  Google Scholar 

  • Dai HJ (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35:1035–1044

    Article  Google Scholar 

  • Faroughi S, Sari MS, Abdelkefi A (2020) Nonlocal Timoshenko representation and analysis of multi-layered functionally graded nanobeams. Microsyst Technol 27:893–911

    Article  Google Scholar 

  • Gangele A, Garala SK, Pandey AK (2018) Influence of van der Waals forces on elastic and buckling characteristics of vertically aligned carbon nanotubes. Int J Mech Sci 146:191–199

    Article  Google Scholar 

  • Girifalco LA, Hodak M, Lee RS (2000) Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys Rev B 62:13104–13110

    Article  Google Scholar 

  • Guo Z, Chang T, Guo X, Gao H (2011) Thermal-induced edge barriers and forces in interlayer interaction of concentric carbon nanotubes. Phys Rev Lett 107:105502

    Article  Google Scholar 

  • Guo HL, Shang FL, Li CL (2021) Transverse wave propagation in viscoelastic single-walled carbon nanotubes with surface effect based on nonlocal second-order strain gradient elasticity theory. Microsyst Technol. https://doi.org/10.1007/s00542-020-05173-1

    Article  Google Scholar 

  • Huang X, Yuan H, Hsia KJ, Zhang S (2010) Coordinated buckling of thick multi-walled carbon nanotubes under uniaxial compression. Nano Res 3:32–42

    Article  Google Scholar 

  • Huang K, Zhang S, Li J, Li Z (2019) Nonlocal nonlinear model of Bernoulli–Euler nanobeam with small initial curvature and its application to single-walled carbon nanotubes. Microsyst Technol 25:4303–4310

    Article  Google Scholar 

  • Jagtap P, Reddy SK, Sharma D, Kumar P (2015) Tailoring energy absorption capacity of CNT forests through application of electric field. Carbon 95:126–136

    Article  Google Scholar 

  • Jiang P, Qing H, Gao CF (2020) Theoretical analysis on elastic buckling of nanobeams based on stress-driven nonlocal integral model. Appl Math Mech-Engl Ed 41:207–232

    Article  MathSciNet  MATH  Google Scholar 

  • Kiani K (2014) Axial buckling analysis of vertically aligned ensembles of single-walled carbon nanotubes using nonlocal discrete and continuous models. Acta Mech 225:3569–3589

    Article  MathSciNet  MATH  Google Scholar 

  • Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502

    Article  Google Scholar 

  • Li YP, Kang J, Choi JB, Nam JD, Suhr J (2015) Determination of material constants of vertically aligned carbon nanotube structures in compressions. Nanotechnology 26:245701

    Article  Google Scholar 

  • Liew KM, Wong CH, Tan MJ (2005) Buckling properties of carbon nanotube bundles. Appl Phys Lett 87:041901

    Article  Google Scholar 

  • Lin F, Xiang Y (2014) Numerical analysis on nonlinear free vibration of carbon nanotube reinforced composite beams. Int J Struct Stab Dyn 14:21

    MathSciNet  MATH  Google Scholar 

  • Liu B, Wu F, Gui H, Zheng M, Zhou C (2017) Chirality-controlled synthesis and applications of single-wall carbon nanotubes. ACS Nano 11:31–53

    Article  Google Scholar 

  • Lu WB, Liu B, Wu J, Xiao J, Hwang KC, Fu SY, Huang Y (2009) Continuum modeling of van der Waals interactions between carbon nanotube walls. Appl Phys Lett 94:101917

  • Malikan M, Eremeyev VA, Sedighi HM (2020) Buckling analysis of a non-concentric double-walled carbon nanotube. Acta Mech 231:5007–5020

    Article  MathSciNet  Google Scholar 

  • Mohamed N, Mohamed SA, Eltaher MA (2021) Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model. Eng Comput 37:2823–2836

    Article  Google Scholar 

  • Mohammadimehr M, Monajemi AA, Afshari H (2020) Free and forced vibration analysis of viscoelastic damped FG-CNT reinforced micro composite beams. Microsyst Technol Micro Nanosyst -Inf Storage Process Syst 26:3085–3099

    Google Scholar 

  • Pogorelov EG, Zhbanov AI, Chang YC, Yang S (2012) Universal curves for the van der Waals interaction between single-walled carbon nanotubes. Langmuir 28:1276–1282

    Article  Google Scholar 

  • Qu LT, Dai LM, Stone M, Xia ZH, Wang ZL (2008) Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off. Science 322:238–242

    Article  Google Scholar 

  • Reddy JN, Pang SD (2008) Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J Appl Phys 103:023511

    Article  Google Scholar 

  • Romano G, Barretta R (2017) Nonlocal elasticity in nanobeams: the stress-driven integral model. Int J Eng Sci 115:14–27

    Article  MathSciNet  MATH  Google Scholar 

  • Romano G, Barretta R, Diaco M, de Sciarra FM (2017) Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int J Mech Sci 121:151–156

    Article  Google Scholar 

  • Ru CQ (2000) Effect of van der Waals forces on axial buckling of a double-walled carbon nanotube. J Appl Phys 87:7227–7231

    Article  Google Scholar 

  • Ru CQ (2001) Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium. J Mech Phys Solids 49:1265–1279

    Article  MATH  Google Scholar 

  • Semmah A, Tounsi A, Zidour M, Heireche H, Naceri M (2015) Effect of the chirality on critical buckling temperature of zigzag single-walled carbon nanotubes using the nonlocal continuum theory. Fuller Nanotub Carbon Nanostruct 23:518–522

    Article  Google Scholar 

  • Shi J-X, Natsuki T, Ni Q-Q (2014) Radial buckling of multi-walled carbon nanotubes under hydrostatic pressure. Appl Phys A-Mater Sci Process 117:1103–1108

    Article  Google Scholar 

  • Sun YZ, Liew KM (2014) Effect of higher-order deformation gradients on buckling of single-walled carbon nanotubes. Compos Struct 109:279–285

    Article  Google Scholar 

  • Umeno Y, Sato M, Shima H, Sato M (2017) Atomistic model analysis of buckling behavior of compressed carbon nanotubes. Solid State Phenom 258:61–64

    Article  Google Scholar 

  • Wang Q, Wang CM (2007) The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology 18:075702

    Article  Google Scholar 

  • Wittmaack BK, Volkov AN, Zhigilei LV (2018) Mesoscopic modeling of the uniaxial compression and recovery of vertically aligned carbon nanotube forests. Compos Sci Technol 166:66–85

    Article  Google Scholar 

  • Yao X, Sun Y (2012) Axially compressive deformation mechanisms of single- and multi-walled carbon nanotubes via finite element analysis. J Comput Theor Nanosci 9:696–706

    Article  Google Scholar 

  • Yas MH, Samadi N (2012) Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. Int J Press Vessels Pip 98:119–128

    Article  Google Scholar 

  • Yuan X, Wang Y, Zhu B (2018) Adhesion between two carbon nanotubes: insights from molecular dynamics simulations and continuum mechanics. Int J Mech Sci 138–139:323–336

    Article  Google Scholar 

  • Zhang P, Qing H (2020) Buckling analysis of curved sandwich microbeams made of functionally graded materials via the stress-driven nonlocal integral model. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2020.1811926

    Article  Google Scholar 

  • Zhang P, Qing H (2021a) Closed-form solution in bi-Helmholtz kernel based two-phase nonlocal integral models for functionally graded Timoshenko beams. Compos Struct 265:113770

    Article  Google Scholar 

  • Zhang P, Qing H (2021b) Well-posed two-phase nonlocal integral models for free vibration of nanobeams in context with higher-order refined shear deformation theory. J Vib Control. https://doi.org/10.1177/10775463211039902

    Article  Google Scholar 

  • Zhang P, Qing H, Gao C-F (2020) Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress-driven nonlocal integral model. Compos Struct 245:112362

    Article  Google Scholar 

  • Zhang P, Schiavone P, Qing H (2021) Two-phase local/nonlocal mixture models for buckling analysis of higher-order refined shear deformation beams under thermal effect. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2021.2003489

    Article  Google Scholar 

  • Zhao J, Jiang J-W, Jia Y, Guo W, Rabczuk T (2013) A theoretical analysis of cohesive energy between carbon nanotubes, graphene and substrates. Carbon 57:108–119

    Article  Google Scholar 

  • Zhao J, Jia Y, Wei N, Rabczuk T (2015) Binding energy and mechanical stability of two parallel and crossing carbon nanotubes. Proc R Soc A Math Phys Eng Sci 471:20150229

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 51435008, 51705247), China Postdoctoral Science Foundation (2020M671474).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Li or Zhendong Dai.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The inverse Laplace transform expressions of \(f_{i} (x)\) and \(g_{i} (x)\)

Appendix A: The inverse Laplace transform expressions of \(f_{i} (x)\) and \(g_{i} (x)\)

$$\begin{gathered} f_{0} \left( x \right) = \frac{{bc\left( {b^{2} - c^{2} } \right)\sinh \left[ {ax} \right] + ac\left( { - a^{2} + c^{2} } \right)\sinh \left[ {bx} \right] + ab\left( {a^{2} - b^{2} } \right)\sinh \left[ {cx} \right]}}{{abc\left( {a^{2} - b^{2} } \right)\left( {a^{2} - c^{2} } \right)\left( {b^{2} - c^{2} } \right)}} \hfill \\ f_{1} \left( x \right) = \frac{{\left( {b^{2} - c^{2} } \right)\cosh \left[ {ax} \right] + \left( { - a^{2} + c^{2} } \right)\cosh \left[ {bx} \right] + \left( {a^{2} - b^{2} } \right)\cosh \left[ {cx} \right]}}{{\left( {a^{2} - b^{2} } \right)\left( {a^{2} - c^{2} } \right)\left( {b^{2} - c^{2} } \right)}} \hfill \\ f_{2} \left( x \right) = \frac{{a\left( {b^{2} - c^{2} } \right)\sinh \left[ {ax} \right] + b\left( { - a^{2} + c^{2} } \right)\sinh \left[ {bx} \right] + \left( {a^{2} - b^{2} } \right)c\sinh \left[ {cx} \right]}}{{\left( {a^{2} - b^{2} } \right)\left( {a^{2} - c^{2} } \right)\left( {b^{2} - c^{2} } \right)}} \hfill \\ f_{3} \left( x \right) = \frac{{a^{2} \left( {b^{2} - c^{2} } \right)\cosh \left[ {ax} \right] + b^{2} \left( { - a^{2} + c^{2} } \right)\cosh \left[ {bx} \right] + \left( {a^{2} - b^{2} } \right)c^{2} \cosh \left[ {cx} \right]}}{{\left( {a^{2} - b^{2} } \right)\left( {a^{2} - c^{2} } \right)\left( {b^{2} - c^{2} } \right)}} \hfill \\ f_{4} \left( x \right) = \frac{{a^{3} \left( {b^{2} - c^{2} } \right)\sinh \left[ {ax} \right] + b^{3} \left( { - a^{2} + c^{2} } \right)\sinh \left[ {bx} \right] + \left( {a^{2} - b^{2} } \right)c^{3} \sinh \left[ {cx} \right]}}{{\left( {a^{2} - b^{2} } \right)\left( {a^{2} - c^{2} } \right)\left( {b^{2} - c^{2} } \right)}} \hfill \\ f_{5} \left( x \right) = \frac{{a^{4} \left( {b^{2} - c^{2} } \right)\cosh \left[ {ax} \right] + b^{4} \left( { - a^{2} + c^{2} } \right)\cosh \left[ {bx} \right] + \left( {a^{2} - b^{2} } \right)c^{4} \cosh \left[ {cx} \right]}}{{\left( {a^{2} - b^{2} } \right)\left( {a^{2} - c^{2} } \right)\left( {b^{2} - c^{2} } \right)}} \hfill \\ \hfill \\ \end{gathered}$$
(A.1)
$$\begin{aligned} g_{0} \left( x \right) & = \frac{{\sinh \left[ {ax} \right]}}{{a\left( {a^{2} - b^{2} } \right)\left( {a^{2} - c^{2} } \right)\left( {a^{2} - d^{2} } \right)}} - \frac{{\sinh \left[ {bx} \right]}}{{b\left( {a^{2} - b^{2} } \right)\left( {b^{2} - c^{2} } \right)\left( {b^{2} - d^{2} } \right)}} \\ & \quad + \frac{{\sinh \left[ {cx} \right]}}{{c\left( {a^{2} - c^{2} } \right)\left( {b^{2} - c^{2} } \right)\left( {c^{2} - d^{2} } \right)}} - \frac{{\sinh \left[ {dx} \right]}}{{d\left( {a^{2} - d^{2} } \right)\left( {b^{2} - d^{2} } \right)\left( {c^{2} - d^{2} } \right)}} \\ g_{1} \left( x \right) & = \frac{{\cosh \left[ {ax} \right]}}{{\left( {a^{2} - b^{2} } \right)\left( {a^{2} - c^{2} } \right)\left( {a^{2} - d^{2} } \right)}} - \frac{{\cosh \left[ {bx} \right]}}{{\left( {a^{2} - b^{2} } \right)\left( {b^{2} - c^{2} } \right)\left( {b^{2} - d^{2} } \right)}} \\ & \quad + \frac{{\cosh \left[ {cx} \right]}}{{\left( {a^{2} - c^{2} } \right)\left( {b^{2} - c^{2} } \right)\left( {c^{2} - d^{2} } \right)}} - \frac{{\cosh \left[ {dx} \right]}}{{\left( {a^{2} - d^{2} } \right)\left( {b^{2} - d^{2} } \right)\left( {c^{2} - d^{2} } \right)}} \\ g_{2} \left( x \right) & = \frac{{a\sinh \left[ {ax} \right]}}{{\left( {a^{2} - b^{2} } \right)\left( {a^{2} - c^{2} } \right)\left( {a^{2} - d^{2} } \right)}} - \frac{{b\sinh \left[ {bx} \right]}}{{\left( {a^{2} - b^{2} } \right)\left( {b^{2} - c^{2} } \right)\left( {b^{2} - d^{2} } \right)}} \\ & \quad + \frac{{c\sinh \left[ {cx} \right]}}{{\left( {a^{2} - c^{2} } \right)\left( {b^{2} - c^{2} } \right)\left( {c^{2} - d^{2} } \right)}} - \frac{{d\sinh \left[ {dx} \right]}}{{\left( {a^{2} - d^{2} } \right)\left( {b^{2} - d^{2} } \right)\left( {c^{2} - d^{2} } \right)}} \\ g_{3} \left( x \right) & = \frac{{a^{2} \cosh \left[ {ax} \right]}}{{\left( {a^{2} - b^{2} } \right)\left( {a^{2} - c^{2} } \right)\left( {a^{2} - d^{2} } \right)}} - \frac{{b^{2} \cosh \left[ {bx} \right]}}{{\left( {a^{2} - b^{2} } \right)\left( {b^{2} - c^{2} } \right)\left( {b^{2} - d^{2} } \right)}} \\ & \quad + \frac{{c^{2} \cosh \left[ {cx} \right]}}{{\left( {a^{2} - c^{2} } \right)\left( {b^{2} - c^{2} } \right)\left( {c^{2} - d^{2} } \right)}} - \frac{{d^{2} \cosh \left[ {dx} \right]}}{{\left( {a^{2} - d^{2} } \right)\left( {b^{2} - d^{2} } \right)\left( {c^{2} - d^{2} } \right)}} \\ g_{4} \left( x \right) & = \frac{{a^{3} \sinh \left[ {ax} \right]}}{{\left( {a^{2} - b^{2} } \right)\left( {a^{2} - c^{2} } \right)\left( {a^{2} - d^{2} } \right)}} - \frac{{b^{3} \sinh \left[ {bx} \right]}}{{\left( {a^{2} - b^{2} } \right)\left( {b^{2} - c^{2} } \right)\left( {b^{2} - d^{2} } \right)}} \\ & \quad + \frac{{c^{3} \sinh \left[ {cx} \right]}}{{\left( {a^{2} - c^{2} } \right)\left( {b^{2} - c^{2} } \right)\left( {c^{2} - d^{2} } \right)}} - \frac{{d^{3} \sinh \left[ {dx} \right]}}{{\left( {a^{2} - d^{2} } \right)\left( {b^{2} - d^{2} } \right)\left( {c^{2} - d^{2} } \right)}} \\ g_{5} \left( x \right) & = \frac{{a^{4} \cosh \left[ {ax} \right]}}{{\left( {a^{2} - b^{2} } \right)\left( {a^{2} - c^{2} } \right)\left( {a^{2} - d^{2} } \right)}} - \frac{{b^{4} \cosh \left[ {bx} \right]}}{{\left( {a^{2} - b^{2} } \right)\left( {b^{2} - c^{2} } \right)\left( {b^{2} - d^{2} } \right)}} \\ & \quad + {\kern 1pt} \frac{{c^{4} \cosh \left[ {cx} \right]}}{{\left( {a^{2} - c^{2} } \right)\left( {b^{2} - c^{2} } \right)\left( {c^{2} - d^{2} } \right)}} - \frac{{d^{4} \cosh \left[ {dx} \right]}}{{\left( {a^{2} - d^{2} } \right)\left( {b^{2} - d^{2} } \right)\left( {c^{2} - d^{2} } \right)}} \\ g_{6} \left( x \right) & = \frac{{a^{5} \sinh \left[ {ax} \right]}}{{\left( {a^{2} - b^{2} } \right)\left( {a^{2} - c^{2} } \right)\left( {a^{2} - d^{2} } \right)}} - \frac{{b^{5} \sinh \left[ {bx} \right]}}{{\left( {a^{2} - b^{2} } \right)\left( {b^{2} - c^{2} } \right)\left( {b^{2} - d^{2} } \right)}} \\ & \quad + \frac{{c^{5} \sinh \left[ {cx} \right]}}{{\left( {a^{2} - c^{2} } \right)\left( {b^{2} - c^{2} } \right)\left( {c^{2} - d^{2} } \right)}} - \frac{{d^{5} \sinh \left[ {dx} \right]}}{{\left( {a^{2} - d^{2} } \right)\left( {b^{2} - d^{2} } \right)\left( {c^{2} - d^{2} } \right)}} \\ g_{7} \left( x \right) & = \frac{{a^{6} \cosh \left[ {ax} \right]}}{{\left( {a^{2} - b^{2} } \right)\left( {a^{2} - c^{2} } \right)\left( {a^{2} - d^{2} } \right)}} - \frac{{b^{6} \cosh \left[ {bx} \right]}}{{\left( {a^{2} - b^{2} } \right)\left( {b^{2} - c^{2} } \right)\left( {b^{2} - d^{2} } \right)}} \\ & \quad + \frac{{c^{6} \cosh \left[ {cx} \right]}}{{\left( {a^{2} - c^{2} } \right)\left( {b^{2} - c^{2} } \right)\left( {c^{2} - d^{2} } \right)}} - \frac{{d^{6} \cosh \left[ {dx} \right]}}{{\left( {a^{2} - d^{2} } \right)\left( {b^{2} - d^{2} } \right)\left( {c^{2} - d^{2} } \right)}} \\ \end{aligned}$$
(A.2)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Li, Y., Lu, M. et al. Stress-driven nonlocal Timoshenko beam model for buckling analysis of carbon nanotubes constrained by surface van der Waals interactions. Microsyst Technol 28, 1115–1127 (2022). https://doi.org/10.1007/s00542-022-05266-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-022-05266-z

Navigation