Skip to main content

Estimating the effective quality factor of a rotary comb-drive microresonator based on a non-classical theory

Abstract

Due to the considerable importance of viscous damping as a principal source of energy dissipation in microstructures, this manuscript presents a mathematical model to predict the thin film damping in a rotary comb-drive microresonator. The proposed model is for a silicon micro-finger which oscillates longitudinally as a rigid body. The gap between the fingers is filled with air, which typically plays a significant role in the damping of the vibrating structures. As the gap between the fingers is so small (in the range of micrometer), the equations governing the surrounding air are extracted based on micropolar theory, which is considered to be an expedient theory for analyzing the micro-scale fluid behavior. The governing equations are discretized and numerically solved by considering the slip and spin boundary conditions on the fluid–solid interface. By applying a complex frequency approach, the effective quality factor of the resonator is predicted. Investigating the profound effect of boundary conditions shows that considering the slip and spin boundary conditions lead to the decrement of the viscous damping ratio of the resonator.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Abbasnejad B, Rezazadeh G (2012) Mechanical behavior of an FGM micro-beam subjected to a nonlinear electrostatic pressure. Int J Mech Mater Des 8(4):381–392

    Article  Google Scholar 

  • Alcheikh N, Kosuru L, Jaber N, Bellaredj YMI (2016) Influence of squeeze film damping on the higher-order modes of clamped-clamped microbeams. J Micromech Microeng 26(6):065014

    Article  Google Scholar 

  • Azizi S, Rezazadeh G, Ghazavi MR, Esmaeilzadeh Khadem S (2011) Stabilizing the pull-in instability of an electrostatically actuated micro-beam using piezoelectric actuation. Appl Math Model 35(10):4796–4815

    Article  MATH  Google Scholar 

  • Azizi S, Ghazavi MR, Esmaeilzadeh Khadem S, Rezazadeh G, Cetinkaya C (2013) Application of piezoelectric actuation to regularize the chaotic response of an electrostatically actuated micro-beam. Nonlinear Dyn 73(1–2):853–867

    Article  MathSciNet  MATH  Google Scholar 

  • Azma S, Rezazadeh G, Shabani R, Alizadeh-Haghighi E (2015) Viscos fluid damping in a laterally oscillating finger of a comb-drive micro-resonator based on micro-polar fluid theory. Acta Mech Sin 32(3):397–405

    Article  MATH  Google Scholar 

  • Blech JJ (1983) On isothermal squeeze films. J Lubr Technol 105(4):615–620

    Article  Google Scholar 

  • Bormashenko E, Balter R, Aurbach D (2010) Micropump based on liquid marbles. Appl Phys Lett 97:091908

    Article  Google Scholar 

  • Burns DW, Zook JD, Horning RD et al (1995) Sealed-cavity resonant microbeam pressure sensor. Sens Actuators A 48(3):179–186

    Article  Google Scholar 

  • Burns DW, Horning RD, Herb WR et al (1996) Sealed-cavity resonant microbeam accelerometer. Sens Actuators A 53(1–3):249–255

    Article  Google Scholar 

  • Chatrejee S, Pohit G (2009) A large deflection model for the pull-in analysis of electrostatically actuated microcantilever beams. J Sound Vib 322:969–986

    Article  Google Scholar 

  • Chatrejee S, Pohit G (2010) Squeeze- film characteristics of cantilever micro-resonators for higher modes of flexural vibration. Int J Eng Sci Technol 2(4):187–199

    Google Scholar 

  • Chen J, Liang C, Lee JD (2011) Theory and simulation of micropolar fluid dynamics. Proc Inst Mech Eng Part N J Nanomater Nanoeng Nanosyst 224(1–2):31–39

    Google Scholar 

  • Cho YH, Pisano AP, Howe RT (1994) Viscous damping model for laterally oscillating microstructures. J Microelectromech Syst 3(2):81–87

    Article  Google Scholar 

  • Cleland AN, Roukes ML (1998) A nanometre-scale mechanical electrometer. Nature 392:160–162

    Article  Google Scholar 

  • Du Y, Zhou G, Cheo KL, Zhang Q, Feng H, Chau FS (2009) A 2-DOF circular-Resonator-Driven in-plane vibratory grating laser scanner. J Microelectromech Syst 18(4):892–904

    Article  Google Scholar 

  • Eringen AC (1966) Theory of micropolar fluids. Int J Math Mech 16:1–18

    MathSciNet  Google Scholar 

  • Eringen AC (1972) Theory of thermomicrofluids. J Math Anal Appl 38(2):480–496

    Article  MATH  Google Scholar 

  • Fathalilou M, Rezazadeh G, Mohammadian A (2019) Stability analysis of a capacitive microresonator with embedded pre-strained SMA wires. Int J Mech Mater Des 15:681–693

    Article  Google Scholar 

  • Feng CH, Zhao YP, Liu DQ (2006) Squeeze-film effects in MEMS devices with perforated plates for small amplitude vibration. Microsyst Technol 13:625

    Article  Google Scholar 

  • Galisultanov A, Moal PL, Bourbon G, Walter V (2017) Squeeze film damping and stiffening in circular CMUT with air-filled cavity: Influence of the lateral venting boundary conditions and the bias voltage. Sens Actuators A 266:15–23

    Article  Google Scholar 

  • Ghanbari M, Rezazadeh G (2019) A liquid-state high sensitive accelerometer based on a micro-scale liquid marble. Microsyst Technol. https://doi.org/10.1007/s00542-019-04528-7

    Article  Google Scholar 

  • Ghanbari M, Hossainpour S, Rezazadeh G (2014) Effect of fluid media on the vibration of a microbeam resonator using micropolar theory. Modares Mech Eng 14(10):205–210

    Google Scholar 

  • Ghanbari M, Hossainpour S, Rezazadeh G (2015a) Study of Squeeze film damping in a micro-beam resonator based on micropolar theory. Latin Am J Solids Struct 12(1):77–91

    Article  Google Scholar 

  • Ghanbari M, Hossainpour S, Rezazadeh G (2015b) On the modeling of a piezoelectrically actuated microsensor for simultaneous measurement of microscale fluid physical properties. Appl Phys A 121(2):651–663

    Article  Google Scholar 

  • Ghanbari M, Hossainpour S, Rezazadeh G (2018) Measurement of a micro-scale fluid physical properties using torsional vibration of a micro-shaft. Modell Meas Control B 87(4):257–265

    Article  Google Scholar 

  • Ghanbari M, Hossainpour S, Rezazadeh G (2019) Studying torsional vibration of a micro-shaft in a micro-scale fluid media based on non-classical theories. Latin Am J Solids Struct 16(1):e138

    Article  Google Scholar 

  • Hegab HE, Liu G (2000) Fluid flow modeling of micro-orifices using micropolar theory, Proceeding SPIE 4177, Microfluidic Devices and systems

  • Heinisch M, Reichel EK, Dufour I, Jakoby B (2014) Modeling and experimental investigation of resonant viscosity and mass density sensors considering their cross sensitivity to temperature. Procedia Eng 87:472–475

    Article  Google Scholar 

  • Heinisch M, Voglhuber-Brunnmaier T, Reichel EK, Dufour I, Jakoby B (2015) Application of resonant tuning forks with circular and rectangular cross sections for precise mass density and viscosity measurements. Sens Actuators A 226:163–174

    Article  Google Scholar 

  • Iannacci J (2019) RF-MEMS for 5G applications: a reconfigurable 8-bit power attenuator working up to 110 GHz. Part1: design concept, technology, and working principles. Microsyst Technol. https://doi.org/10.1007/s00542-019-04591-0

    Article  Google Scholar 

  • Kucaba-Pietal A (2004) Microchannels flow modeling with the micropolar fluid theory. Bull Pol Acad Sci 52(3):209–213

    MATH  Google Scholar 

  • Lukaszewicz G (1999) Micropolar fluids: theory and applications, Chapter 1

  • Nayfeh H, Younis MI (2004) A new approach to the modeling and simulation of flexible microstructures under the effect of squeeze-film damping. J Micromech Microeng 14(2):170–181

    Article  Google Scholar 

  • Newell WE (1968) Miniaturization of tuning forks. Science 161:1320–1326

    Article  Google Scholar 

  • Nguyen CTC (2004) Vibrating RF MEMS for next generation wireless applications,” Proceedings of the Custom Integrated Circuits Conference, Orlando, FL, 3–6 October. IEEE, Piscataway

  • Pandey AK, Pratap R (2007) Effect of flexural modes on squeeze film damping in MEMS cantilever resonators. J Micromech Microeng 17(12):2475–2484

    Article  Google Scholar 

  • Revathi S, Padmanabhan R (2018) Design and development of piezoelectric composite-based micropump. J Microelectromech Syst 27(6):1105–1113

    Article  Google Scholar 

  • Revathi S, Padmapriya N, Padmanabhan R (2019) A design analysis of piezoelectric- polymer composite-based valveless micropump. Int J Model Simul 39(4):1–15

    Google Scholar 

  • Rezazadeh G, Ghanbari M (2010) On the modeling of a piezoelectrically actuated microsensor for simultaneous measurement of fluids viscosity and density. Measurement 43(10):1516–1524

    Article  Google Scholar 

  • Rezazadeh G, Ghanbari M (2018) On the Mathematical Modeling of a MEMS-based sensor for simultaneous measurement of fluids viscosity and density. Sens Imaging 19:27

    Article  Google Scholar 

  • Samaali H, Najar F, Choura S, Nayfeh AH (2011) A double microbeam MEMS ohmic switch for RF-applications with low actuation voltage. Nonlinear Dyn 63(4):719–734

    Article  Google Scholar 

  • Sen P, Kim CJ (2009) A liquid-solid direct contact low-loss RF micro switch. J Microelectromech Syst 18(5):990–997

    Article  Google Scholar 

  • Veijola T (2004) Compact models for squeezed-film dampers with inertial and rarefied gas effects. J Micromech Microeng 14(7):1109–1118

    Article  Google Scholar 

  • Wang CY (1976) The squeezing of a fluid between two plates. ASME J Appl Mech 43(4):579–582

    Article  MATH  Google Scholar 

  • Wang W, Jia J, Li J (2013) Slide film damping in microelectromechanical system devices. J Nanoeng Nanosyst 227(4):162–170

    Google Scholar 

  • Winter C, Fabre L, Lo Conte F, Kilcher L, Kechana F, Abele N, Kayal M (2009) Micro-beamer based on MEMS micro-mirrors and laser light source. Procedia Chem 1:1311–1314

    Article  Google Scholar 

  • Xie H (2018) Editorial for the special issue on MEMS mirrors. Micromachines 9(3):99

    Article  Google Scholar 

  • Yasumura KY, Stowe TD, Chow EM et al (2000) Quality factor in micro-and submicron-thick cantilevers. J Microelectromech Syst 9(1):117–125

    Article  Google Scholar 

  • Ye W, Wang X, Hemmert W, Freeman D, White J (2003) Air damping in lateral oscillating micro-resonators: a numerical and experimental study. J Microelectromech Syst 12(5):557–566

    Article  Google Scholar 

  • Ye S, Zhu K, Wang W (2006) Laminar flow of micropolar fluid in rectangular microchannels. Acta Mech Sin 22(5):403–408

    Article  MATH  Google Scholar 

  • Ye Z, Fulop A, Helgason OB, Andrekson PA, Torres-Company V (2019) Low-loss high-Q silicon-rich silicon nitride microresonators for kerr nonlinear optics. Opt Lett 44(13):3326–3329

    Article  Google Scholar 

  • Younis MI, Nayfeh AH (2007) Simulation of squeeze-film damping of microplates actuated by large electrostatic load. J Comput Nonlinear Dyn 2(3):101–112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Ghanbari.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari, M., Rezazadeh, G. Estimating the effective quality factor of a rotary comb-drive microresonator based on a non-classical theory. Microsyst Technol 27, 3533–3543 (2021). https://doi.org/10.1007/s00542-020-05176-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-05176-y