Ades C, Dilibal S, Engeberg E (2020) Shape memory alloy tube actuators inherently enable internal fluidic cooling for a robotic finger under force control. Smart Mater Struct
Ali HF, Baek H, Jang T, Kim Y (2020) Finger-like mechanism using bending shape memory alloys. In: ASME 2020 29th conference on information storage and processing systems, american society of mechanical engineers digital collection
Almubarak Y, Punnoose M, Maly NX, Hamidi A, Tadesse Y (2020) Kryptojelly: A jellyfish robot with confined, adjustable pre-stress, and easily replaceable shape memory alloy niti actuators. Smart Mater Struct
Andrianesis K, Tzes A (2015) Development and control of a multifunctional prosthetic hand with shape memory alloy actuators. J Intell Robot Syst 78(2):257–289
Article
Google Scholar
Brinson LC (1993) One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J Intell Mater Syst Struct 4(2):229–242
Article
Google Scholar
Bundhoo V, Haslam E, Birch B, Park EJ (2009) A shape memory alloy-based tendon-driven actuation system for biomimetic artificial fingers, part i: design and evaluation. Robotica 27(1):131
Article
Google Scholar
DeLaurentis K, Mavroidis C, Pfeiffer C (2000) Development of a shape memory alloy actuated robotic hand. In: Proceedings of the ACTUATOR: 7th international conference on new actuators, pp 281–284
Elahinia MH, Ahmadian M (2005) An enhanced sma phenomenological model: I. The shortcomings of the existing models. Smart Mater Struct 14(6):1297
Article
Google Scholar
Gilardi G, Haslam E, Bundhoo V, Park EJ (2010) A shape memory alloy based tendon-driven actuation system for biomimetic artificial fingers, part ii: modelling and control. Robotica 28(5):675–687
Article
Google Scholar
Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 1980–2015(56):1078–1113
Article
Google Scholar
Langbein S (2009) Development of standardised and integrated shape memory components in “one-module” -design. In: European symposium on martensitic transformations, EDP Sciences, p 07010
Laurentis KJD, Mavroidis C (2002) Mechanical design of a shape memory alloy actuated prosthetic hand. Technol Health Care 10(2):91–106
Article
Google Scholar
Lee JH, Chung YS, Rodrigue H (2019a) Long shape memory alloy tendon-based soft robotic actuators and implementation as a soft gripper. Sci Rep 9(1):1–12
Google Scholar
Lee JH, Chung YS, Rodrigue H (2019b) Long shape memory alloy tendon-based soft robotic actuators and implementation as a soft gripper. Sci Rep 9(1):1–12
Google Scholar
Liang C, Rogers CA (1997) One-dimensional thermomechanical constitutive relations for shape memory materials. J Intell Mater Syst Struct 8(4):285–302
Article
Google Scholar
Liu M, Hao L, Zhang W, Zhao Z (2020) A novel design of shape-memory alloy-based soft robotic gripper with variable stiffness. Int J Adv Rob Syst 17(1):1729881420907813
Google Scholar
Lu Y, Xie Z, Wang J, Yue H, Wu M, Liu Y (2019) A novel design of a parallel gripper actuated by a large-stroke shape memory alloy actuator. Int J Mech Sci 159:74–80
Article
Google Scholar
Maffiodo D, Raparelli T (2019) Flexible fingers based on shape memory alloy actuated modules. Machines 7(2):40
Article
Google Scholar
Mao T, Peng H, Lu X, Zhao C (2019) A small locust inspired actuator driven by shape memory alloys and piezoelectric strips. Smart Mater Struct 28(10):105051
Article
Google Scholar
Peng H, Mao T, Lu X (2020) A small legged deformable robot with multi-mode motion. J Intell Mater Syst Struct 31(5):704–718
Article
Google Scholar
Rodrigue H, Wang W, Kim DR, Ahn SH (2017) Curved shape memory alloy-based soft actuators and application to soft gripper. Compos Struct 176:398–406
Article
Google Scholar
Simone F, Rizzello G, Seelecke S (2017) Metal muscles and nerves—a self-sensing sma-actuated hand concept. Smart Mater Struct 26(9):095007
Article
Google Scholar
Simone F, Rizzello G, Seelecke S, Borreggine S, Naso D (2019) Modeling and identification of a shape memory alloy robotic finger actuator. In: 2019 18th European control conference (ECC), IEEE, pp 1097–1102
Song SH, Kim MS, Rodrigue H, Lee JY, Shim JE, Kim MC, Chu WS, Ahn SH (2016) Turtle mimetic soft robot with two swimming gaits. Bioinspiration Biomim 11(3):036010
Article
Google Scholar
Tai K, El-Sayed AR, Shahriari M, Biglarbegian M, Mahmud S (2016) State of the art robotic grippers and applications. Robotics 5(2):11
Article
Google Scholar
Tanaka K (1986) A thermomechanical sketch of shape memory effect: one-dimensional tensile behavior. RES MECHANICA
Wang W, Ahn SH (2017) Shape memory alloy-based soft gripper with variable stiffness for compliant and effective grasping. Soft Robot 4(4):379–389
Article
Google Scholar
Wang W, Rodrigue H, Kim HI, Han MW, Ahn SH (2016) Soft composite hinge actuator and application to compliant robotic gripper. Compos B Eng 98:397–405
Article
Google Scholar
Wang W, Yu CY, Abrego Serrano PA, Ahn SH (2020a) Shape memory alloy-based soft finger with changeable bending length using targeted variable stiffness. Soft Robot 7(3):283–291
Article
Google Scholar
Wang Y, Zheng S, Song Z, Pang J, Li J (2020b) A coupling dynamic model for studying the physical interaction between a finger exoskeleton and a human finger. IEEE Access 8:125412–125422
Article
Google Scholar