Skip to main content
Log in

Microfabrication of bioinspired curved artificial compound eyes: a review

  • Review Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Eyes are one of the most important organs for natural creatures to perceive external information. The curved compound eyes of insects endowing with merits of a wide field of view (FOV), high sensitivity and detecting quick moving targets have aroused extensive concern. There are mainly two categories of compound eyes in nature. One is apposition eyes which can avoid light crosstalk and the other is superposition ones with higher sensitivity. With the rapid development of micron and nano machining technologies, the fabrication techniques of compound eyes have experienced changes from waveguide self-writing initially to advanced femtosecond laser method through thermal reflow and other processes. The diameters of compound eyes varies from the original several hundreds micrometers to the smallest 5 µm currently, which is much closer to the natural ones. Therefore, a critical review is presented to systematically summary and compare the micromachining processes of curved artificial compound eyes in recent years from the perspective of microfabrication technology. Finally, we describe a broad applications including navigation and location, digital camera and rapid detection of moving objects as well as existing challenges and future perspective of curved artificial compound eyes. It is hoped that this review can help researchers to gain a better overall understanding of microfabrication in this field and push forward it to a new stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen KW, Farahi N, Li Y, Limberopoulos NI, Walker DE, Urbas AM, Liberman V, Astratov VN (2015) Super-resolution microscopy by movable thin-films with embedded microspheres: resolution analysis. Ann Phys 527(7–8):513–522

    Article  MathSciNet  Google Scholar 

  • Bbk R (1992) A bat-like sonar system for obstacle localization. IEEE Trans Syst Man Cybern 22:636–646

    Article  Google Scholar 

  • Bidlingmayer WL (1994) How mosquitoes see traps: role of visual responses. J Am Mosq Control Assoc 10:272–279

    Google Scholar 

  • Boseman A, Nowlin K, Ashraf S, Yang J, Lajeunesse D (2013) Ultrastructural analysis of wild type and mutant Drosophila melanogaster using helium ion microscopy. Micron 51:26–35

    Article  Google Scholar 

  • Bruckner A, Duparre J, Dannberg P, Brauer A, Tunnermann A (2007) Artificial neural superposition eye. Opt Express 15:11922–11933

    Article  Google Scholar 

  • Brückner A (2011) Multi-aperture optics for wafer-level cameras. J. Micro-nanolith Mem 10(4):043010

    Google Scholar 

  • Cao A, Wang J, Pang H, Zhang M, Shi L, Deng Q, Hu S (2018) Design and fabrication of a multifocal bionic compound eye for imaging. Bioinspir Biomim 13(2):026012

    Article  Google Scholar 

  • Cao A, Pang H, Zhang M, Shi L, Deng Q, Hu S (2019) Design and fabrication of an artificial compound eye for multi-spectral imaging. Micromachines (Basel) 10(3):208

    Article  Google Scholar 

  • Cao JJ, Hou ZS, Tian ZN, Hua JG, Zhang YL, Chen QD (2020) Bioinspired zoom compound eyes enable variable-focus imaging. ACS Appl Mater Interfaces 12(9):10107–10117

    Article  Google Scholar 

  • Chang Y, Wei J, Lee C (2020) Metamaterials—from fundamentals and MEMS tuning mechanisms to applications. Nanophotonics 9(10):3049–3070

    Article  Google Scholar 

  • Chen F, Liu H, Yang Q, Wang X, Hou C, Bian H, Liang W, Si J, Hou X (2010) Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method. Opt Express 18:20334–20443

    Article  Google Scholar 

  • Chen F, Deng Z, Yang Q, Bian H, Du G, Si J, Hou X (2014) Rapid fabrication of a large-area close-packed quasi-periodic microlens array on BK7 glass. Opt Lett 39(3):606–609

    Article  Google Scholar 

  • Cheng Y, Cao J, Zhang Y, Hao Q (2019) Review of state-of-the-art artificial compound eye imaging systems. Bioinspir Biomim 14(3):031002

    Article  Google Scholar 

  • Davis JD, Barrett SF, Wright CH, Wilcox M (2009) A bio-inspired apposition compound eye machine vision sensor system. Bioinspir Biomim 4(4):046002

    Article  Google Scholar 

  • De Jesus Maciel M, Rocha RP, Carmo JP, Correia JH (2014) Measurement and statistical analysis toward reproducibility validation of AZ4562 cylindrical microlenses obtained by reflow. Measurement 49:60–67

    Article  Google Scholar 

  • Deng Z, Chen F, Yang Q, Bian H, Du G, Yong J, Shan C, Hou X (2016) Dragonfly-eye-inspired artificial compound eyes with sophisticated imaging. Adv Func Mater 26(12):1995–2001

    Article  Google Scholar 

  • Dimitrov AS, Nagayama K (1996) Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 12:1303–1311

    Article  Google Scholar 

  • Duparre JW, Wippermann FC (2006) Micro-optical artificial compound eyes. Bioinspir Biomim 1(1):R1-16

    Article  Google Scholar 

  • Duparre J, Dannberg P, Schreiber P, Uer AB, Nnermann AT (2004) Artificial apposition compound eye fabricated by micro-optics technology. Appl Opt 43:4303–4310

    Article  Google Scholar 

  • Duparre J, Schreiber P, Matthes AE, Pshenay-Severin E, Brauer A, Tunnermann A (2005) Microoptical telescope compound eye. Opt Express 13:889–903

    Article  Google Scholar 

  • Envisioned L-EX-rT (1979) Lobster-eye X-ray telescope envisioned. Science 184:84–85

    Google Scholar 

  • Eom S-H, Wrzesniewski E, Xue J (2011) Close-packed hemispherical microlens arrays for light extraction enhancement in organic light-emitting devices. Org Electro 12(3):472–476

    Article  Google Scholar 

  • Fallah HR, Karimzadeh A (2007) Design and simulation of a high-resolution superposition compound eye. J Mod Opt 54(1):67–76

    Article  MATH  Google Scholar 

  • Fallah HR, Karimzadeh A (2010) MTF of compound eye. Opt Express 18:12304

    Article  Google Scholar 

  • Feng L et al (2011) Design and fabrication of polymer microlens array with self-written waveguide. Chin J Lasers 38:202–207

    Article  Google Scholar 

  • Fitzgerald RJ (2006) Artificial compound eyes. Phys Today 59(6):21–21

    Google Scholar 

  • Floreano D, Pericet-Camara R, Viollet S, Ruffier F, Bruckner A, Leitel R, Buss W, Menouni M, Expert F, Juston R, Dobrzynski MK, L’Eplattenier G, Recktenwald F, Mallot HA, Franceschini N (2013) Miniature curved artificial compound eyes. Proc Natl Acad Sci USA 110(23):9267–9272

    Article  Google Scholar 

  • Gao X, Yan X, Yao X, Xu L, Zhang K, Zhang J, Yang B, Jiang L (2007) The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Adv Mater 19(17):2213–2217

    Article  Google Scholar 

  • Garza-Rivera A, Renero-Carrillo FJ (2011) Design of artificial apposition compound eye. Opt Rev 18:184–186

    Article  Google Scholar 

  • Grigaliūnas V, Lazauskas A, Jucius D, Viržonis D, Abakevičienė B, Smetona S, Tamulevičius S (2016) Microlens fabrication by 3D electron beam lithography combined with thermal reflow technique. Microelectron Eng 164:23–29

    Article  Google Scholar 

  • Gu Z-Z, Fujishima A, Sato O (2002) Fabrication of high-quality opal films with controllable thickness. Chem Mater 14:760–765

    Article  Google Scholar 

  • Gu L, Poddar S, Lin Y, Long Z, Zhang D, Zhang Q, Shu L, Qiu X, Kam M, Javey A, Fan Z (2020) A biomimetic eye with a hemispherical perovskite nanowire array retina. Nature 581(7808):278–282

    Article  Google Scholar 

  • Hamanaka K, Koshi H (1996) An artificial compound eye using a microlens array and its application to scale-invariant processing. Opt Rev 3:264–268

    Article  Google Scholar 

  • Hao B, Liu H, Chen F, Yang Q, Qu P, Du G, Si J, Wang X, Hou X (2012) Versatile route to gapless microlens arrays using laser-tunable wet-etched curved surfaces. Opt Express 20:12939

    Article  Google Scholar 

  • Hao Bian YW, Yang Q, Chen F, Zhang F, Guangqing Du, Yong J, Hou X (2016) Direct fabrication of compound-eye microlens array on curved surfaces by a facile femtosecond laser enhanced wet etching process. Appl Phys Lett 109:221109

    Article  Google Scholar 

  • He M, Yuan X, Bu J, Cheong WC (2004) Fabrication of concave refractive microlens arrays in solgel glass by a simple proximity-effect-assisted reflow technique. Opt Lett 29:1007–1009

    Article  Google Scholar 

  • He Q, Liu J, Yang B, Dong Y, Yang C (2013) Fabrication and characterization of biologically inspired curved-surface artificial compound eyes. J Microelectromech Syst 22(1):4–6

    Article  Google Scholar 

  • Ho CP, Pitchappa P, Lee C (2016) Digitally reconfigurable binary coded terahertz metamaterial with output analogous to NOR and AND. J Appl Phys 119(15):153104

    Article  Google Scholar 

  • Hsu YP et al (2005) ICP etching of sapphire substrates Opt. Mater 27:1171–1174

    Google Scholar 

  • Hu J, Liang Y (2017) A flying-insect-inspired hybrid robot for disaster exploration. In: IEEE International Conference on Robotics and Biomimetics, pp 270–275

  • Huang CC, Wu X, Liu H, Aldalali B, Rogers JA, Jiang H (2014) Large-field-of-view wide-spectrum artificial reflecting superposition compound eyes. Small 10(15):3050–3057

    Article  Google Scholar 

  • Huang S, Li M, Shen L, Qiu J, Zhou Y (2017) Flexible fabrication of biomimetic compound eye array via two-step thermal reflow of simply pre-modeled hierarchic microstructures. Opt Commun 393:213–218

    Article  Google Scholar 

  • Hur J-G (2011) Maskless fabrication of three-dimensional microstructures with high isotropic resolution: practical and theoretical considerations. Appl Opt 50:2383–2390

    Article  Google Scholar 

  • Jacob F (1977) Evolution and tinkering. Science 196:1161–1166

    Article  Google Scholar 

  • Jamali M, Gerhardt I, Rezai M, Frenner K, Fedder H, Wrachtrup J (2014) Microscopic diamond solid-immersion-lenses fabricated around single defect centers by focused ion beam milling. Rev Sci Instrum 85(12):123703

    Article  Google Scholar 

  • Jeong K-H, Kim J, Lee LP (2006) Biologically inspired artificial compound eyes. Science 312:557–561

    Article  Google Scholar 

  • Jin G-X, Hu X-Y, Ma Z-C, Li C-H, Zhang Y-L, Sun H-B (2019) Femtosecond laser fabrication of 3D templates for mass production of artificial compound eyes. Nanotechnol Precis Eng 2(3):110–117

    Article  Google Scholar 

  • Johnson W (1980) Helicopter theory

  • Jung H, Jeong K-H (2009) Microfabricated ommatidia using a laser induced self-writing process for high resolution artificial compound eye optical systems. Opt Express 17:14761–14766

    Article  Google Scholar 

  • Jung G-Y, Li Z, Wu W, Chen Y, Olynick DL, Wang S-Y, Tong WM, Williams RS (2005) Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography. Langmuir 21:1158–1161

    Article  Google Scholar 

  • Jung YH, Park B, Kim JU, Kim TI (2019) Bioinspired electronics for artificial sensory systems. Adv Mater 31(34):e1803637

    Article  Google Scholar 

  • Kennedy JS (1938) The visual responses of flying mosquitoes. Proc Zool Soc Ser A

  • Keum D, Jang KW, Jeon DS, Hwang CSH, Buschbeck EK, Kim MH, Jeong KH (2018) Xenos peckii vision inspires an ultrathin digital camera. Light Sci Appl 7:80

    Article  Google Scholar 

  • Kim MH, Park OO (2012) Hot embossing of polymeric nanostructures using poly(dimethylsiloxane) replica molds based on three-dimensional colloidal crystals. Microelectron Eng 91:121–126

    Article  Google Scholar 

  • Kim J et al (2005) Artificial ommatidia by self-aligned microlenses and waveguides. Opt Lett 30:5

    Article  Google Scholar 

  • Kim J, Jeong KH, Lee LP (2005) Artificial ommatidia by self-aligned microlenses and waveguides. Opt Lett 30(1):5–7

    Article  Google Scholar 

  • Kim S-H, Kim S-H, Yang S-M (2009) Patterned polymeric domes with 3D and 2D embedded colloidal crystals using photocurable emulsion droplets. Adv Mater 21(37):3771–3775

    Article  Google Scholar 

  • Kim JJ, Liu H, Ousati Ashtiani A, Jiang H (2020) Biologically inspired artificial eyes and photonics. Rep Prog Phys 83(4):047101

    Article  Google Scholar 

  • Kim K, Jang KW, Ryu JK, Jeong KH (2020) Biologically inspired ultrathin arrayed camera for high-contrast and high-resolution imaging. Light Sci Appl 9:28

    Article  Google Scholar 

  • Kirschfeld K (1974) The absolute sensitivity of lens and compound eyes. Zeitschrift Fur Naturforschung Section C 29:592–596

    Article  Google Scholar 

  • Ko D-H, Tumbleston JR, Henderson KJ, Euliss LE, DeSimone JM, Lopez R, Samulski ET (2011) Biomimetic microlens array with antireflective “moth-eye” surface. Soft Matter 7(14):6404

    Article  Google Scholar 

  • Kobayashi H, Kikuchi K, Ochi K, Onogi Y (2003) Navigation strategies referring to insect homing in flying robots. In: IEEE International Conference on Robotics and Automation. IEEE

  • Kogos LC, Li Y, Liu J, Li Y, Tian L, Paiella R (2020) Plasmonic ommatidia for lensless compound-eye vision. Nat Commun 11(1):1637

    Article  Google Scholar 

  • Kuo WK, Kuo GF, Lin SY, Yu HH (2015) Fabrication and characterization of artificial miniaturized insect compound eyes for imaging. Bioinspir Biomim 10(5):056010

    Article  Google Scholar 

  • Kyung CM, Yasuura H, Liu Y, Lin YL (2017) Smart sensors and systems https://doi.org/10.1007/978-3-319-33201-7

  • Land MF (1980) Compound eyes: old and new optical mechanisms. Nature 287:681–686

    Article  Google Scholar 

  • Land MF, Nilsson DE (2002) Animal eyes. Q Rev Biol 77:332

    Google Scholar 

  • Lee LP, Szema R (2005) Inspirations from biological optics for advanced photonic systems. Science 310(5751):1148–1150

    Article  Google Scholar 

  • Lee CL, Gu E, Dawson MD, Friel I, Scarsbrook GA (2008) Etching and micro-optics fabrication in diamond using chlorine-based inductively-coupled plasma. Diam Relat Mater 17(7–10):1292–1296

    Article  Google Scholar 

  • Lee CL, Dawson MD, Gu E (2010) Diamond double-sided micro-lenses and reflection gratings. Opt Mater 32(9):1123–1129

    Article  Google Scholar 

  • Li L, Yi AY (2010) Development of a 3D artificial compound eye. Opt Express 18:18125–18137

    Article  Google Scholar 

  • Li H, Gong X, Ni Q, Zhao J, Zhang H, Wang T, Yu W (2014) Replication and characterization of the compound eye of a fruit fly for imaging purpose. Appl Phys Lett 105(14)

  • Li J, Wang W, Mei X, Pan A, Sun X, Liu B, Cui J (2019) Artificial compound eyes prepared by a combination of air-assisted deformation, modified laser swelling, and controlled crystal growth. ACS Nano 13(1):114–124

    Article  Google Scholar 

  • Li J, Wang W, Mei X, Pan A, Liu B, Cui J (2020) Rapid fabrication of microlens arrays on PMMA substrate using a microlens array by rear-side picosecond laser swelling. Opt Laser Eng 126:105872

    Article  Google Scholar 

  • Lian Z-J, Hung S-Y, Shen M-H, Yang H (2014) Rapid fabrication of semiellipsoid microlens using thermal reflow with two different photoresists. Microelectron Eng 115:46–50

    Article  Google Scholar 

  • Liang W-L, Pan J-G, Su G-DJ (2019) One-lens camera using a biologically based artificial compound eye with multiple focal lengths. Optica 6(3):326

    Article  Google Scholar 

  • Liang Y, Zhu T, Xi M, Song Y, Fu J, Zhao D, Wang Y, Wang J, Wang K, Wang H (2019) Fabrication of biomimetic compound eye on single crystal diamond. Opt Express 27(15):20508

    Article  Google Scholar 

  • Liu H, Chen F, Yang Q, Qu P, He S, Wang X, Si J, Hou X (2012) Fabrication of bioinspired omnidirectional and gapless microlens array for wide field-ofview detections. Appl Phys Lett 100:133701

    Article  Google Scholar 

  • Liu H, Reilly S, Herrnsdorf J, Xie E, Savitski VG, Kemp AJ, Gu E, Dawson MD (2016) Large radius of curvature micro-lenses on single crystal diamond for application in monolithic diamond Raman lasers. Diam Relat Mater 65:37–41

    Article  Google Scholar 

  • Liu X-Q, Chen Q-D, Guan K-M, Ma Z-C, Yu Y-H, Li Q-K, Tian Z-N, Sun H-B (2017) Dry-etching-assisted femtosecond laser machining. Laser Photonics Rev 11(3):1600115

    Article  Google Scholar 

  • Liu XQ, Yang SN, Yu L, Chen QD, Zhang YL, Sun HB (2019) Rapid engraving of artificial compound eyes from curved sapphire substrate. Adv Funct Mater 29(18):1900037

    Article  Google Scholar 

  • Liu F, Bian H, Zhang F, Yang Q, Shan C, Li M, Hou X, Chen F (2019) IR Artificial Compound Eye. Adv Opt Mater 8(4):1901767

    Article  Google Scholar 

  • Luo J, Guo Y, Wang X, Fan F (2017) Design and fabrication of a multi-focusing artificial compound eyes with negative meniscus substrate. J Micromech Microeng 27(4):045011

    Article  Google Scholar 

  • Luo J, Guo Y, Wang X (2018) Enhancing the imaging quality and fabrication efficiency of bionic compound eyes using a sandwich structure. J Mod Opt 65(10):1253–1260

    Article  Google Scholar 

  • Ma ZC, Hu XY, Zhang YL, Liu XQ, Hou ZS, Niu LG, Zhu L, Han B, Chen QD, Sun HB (2019) Smart compound eyes enable tunable imaging. Adv Func Mater 29(38):1903340

    Article  Google Scholar 

  • Mao SS, Quéré F, Guizard S, Mao X, Russo RE, Petite G, Martin P (2004) Dynamics of femtosecond laser interactions with dielectrics. Appl Phys A-Mater 79(7):1695–1709

    Article  Google Scholar 

  • Maquet L, Colinet P, Dorbolo S (2014) Organization of microbeads in Leidenfrost drops. Soft Matter 10(23):4061–4066

    Article  Google Scholar 

  • Mazuray L, Duparre J, Rogers PJ, Schreiber P, Volkel R, Wartmann R (2004) Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices. Opt Des Eng

  • Mendonca CR, Correa DS, Baldacchini T, Tayalia P, Mazur E (2008) Two-photon absorption spectrum of the photoinitiator lucirin tpo-l. Appl Phys A-Mater 90(4):633–636

    Article  Google Scholar 

  • Nagelberg S, Zarzar LD, Nicolas N, Subramanian K, Kalow JA, Sresht V, Blankschtein D, Barbastathis G, Kreysing M, Swager TM, Kolle M (2017) Reconfigurable and responsive droplet-based compound micro-lenses. Nat Commun 8:14673

    Article  Google Scholar 

  • Nicholas FB, David LM, Robert HB, Morgan WL (1985) Photolytic technique for producing microlenses in photosensitive glass. Appl Opt 24:2520

    Article  Google Scholar 

  • Ogawa S, Watanabe H, Wang L, Jinnai H, McCarthy TJ, Takahara A (2014) Liquid marbles supported by monodisperse poly(methylsilsesquioxane) particles. Langmuir 30(30):9071–9075

    Article  Google Scholar 

  • Overton G (2007) Artificial compound eye applies hyperacuity. Laser Focus World

  • Pan F, Zhang J, Cai C, Wang T (2006) Rapid fabrication of large-area colloidal crystal monolayers by a vortical surface method. Langmuir 22:7101–7104

    Article  Google Scholar 

  • Pan CT, Chen YC, Chen MF, Hsu YC (2011) Fabrication and design of various dimensions of multi-step ashperical microlens arrays for OLED package. Opt Commun 284(13):3323–3330

    Article  Google Scholar 

  • Park M-K, Lee HJ, Park J-S, Kim M, Bae JM, Mahmud I, Kim H-R (2014) Design and fabrication of multi-focusing microlens array with different numerical apertures by using thermal reflow method. J Opt Soc Korea 18(1):71–77

    Article  Google Scholar 

  • Photolithography RPUMAAiGS (2002) Reduction photolithography using microlens arrays: applications in gray scale photolithography. Anal Chem 74:3267–3273

    Article  Google Scholar 

  • Pitchappa P, Manjappa M, Ho CP, Singh R, Singh N, Lee C (2016) Active control of electromagnetically induced transparency with dual dark mode excitation pathways using MEMS based tri-atomic metamolecules. Appl Phys Lett 109(21)

  • Plett J, Bahl A, Buss M, Kuhnlenz K, Borst A (2012) Bio-inspired visual ego-rotation sensor for MAVs. Biol Cybern 106(1):51–63

    Article  Google Scholar 

  • Pubo Qu FC, Liu H, Yang Q, Jing Lu, Si J, Wang Y, Hou X (2012) A simple route to fabricate artificial compound eye structures. Opt Express 20:5775–5782

    Article  Google Scholar 

  • Qiu J, Li M, Zhu J, Ji C (2018) Fabrication of microlens array with well-defined shape by spatially constrained thermal reflow. J Micromech Microeng 28(8):085015

    Article  Google Scholar 

  • Ren Z, Chang Y, Ma Y, Shih K, Dong B, Lee C (2019) Leveraging of MEMS technologies for optical metamaterials applications. Adv Opt Mater 8(3):1900653

    Article  Google Scholar 

  • Sanders JS, Halford CE (1995) Design and analysis of apposition compound eye optical sensors. Opt Eng 34:222–235

    Article  Google Scholar 

  • Schoenemann B, Parnaste H, Clarkson ENK (2017) Structure and function of a compound eye, more than half a billion years old. Proc Natl Acad Sci USA 114(51):13489–13494

    Article  Google Scholar 

  • Serra F, Gharbi MA, Luo Y, Liu IB, Bade ND, Kamien RD, Yang S, Stebe KJ (2015) Curvature-driven, one-step assembly of reconfigurable smectic liquid crystal “compound eye” lenses. Adv Opt Mater 3(9):1287–1292

    Article  Google Scholar 

  • Shao J, Ding Y, Wang W, Mei X, Zhai H, Tian H, Li X, Liu B (2014) Generation of fully-covering hierarchical micro-/nano- structures by nanoimprinting and modified laser swelling. Small 10(13):2595–2601

    Article  Google Scholar 

  • Sherk TE (1978) Development of the compound eyes of dragonflies (Odonata). J Exp Zool 203:183–200

    Article  Google Scholar 

  • Shieh JY, Kuo JY, Weng HP, Yu HH (2013) Preparation and evaluation of the bioinspired PS/PDMS photochromic films by the self-assembly dip-drawing method. Langmuir 29(2):667–672

    Article  Google Scholar 

  • Shin D, Huang T, Neibloom D, Bevan MA, Frechette J (2019) Multifunctional liquid marble compound lenses. ACS Appl Mater Interfaces 11(37):34478–34486

    Article  Google Scholar 

  • Sihai C (2009) Bionic ommatidia based on microlens array. Opt Eng 48(6):063401

    Article  Google Scholar 

  • Song YM, Xie Y, Malyarchuk V, Xiao J, Jung I, Choi K-J, Liu Z, Park H, Lu C, Kim R-H, Li R, Crozier KB, Huang Y, Rogers JA (2013) Digital cameras with designs inspired by the arthropod eye. Nature 497(7447):95–99

    Article  Google Scholar 

  • Stavenga DG, Kinoshita M, Yang EC, Arikawa K (2001) Retinal regionalization and heterogeneity of butterfly eyes. Naturwissenschaften 88(11):477–481

    Article  Google Scholar 

  • Straw AD, Warrant EJ, O’Carroll DC (2006) A “bright zone” in male hoverfly (Eristalis tenax) eyes and associated faster motion detection and increased contrast sensitivity. J Exp Biol 209(Pt 21):4339–4354

    Article  Google Scholar 

  • Straw AD, Rainsford T, O’Carroll DC (2008) Contrast sensitivity of insect motion detectors to natural images. J Vis 8(3):31–39

    Article  Google Scholar 

  • Stumm-Tegethoff ABF, Dicke AW (1974) Surface structure of the compound eye of various drosophila species and eye mutants of drosophila melanogaster. Theor Appl Genet 44:262–265

    Article  Google Scholar 

  • Su Y-SCG-DJ (2013) Fabrication of polydimethylsiloxane microlens array on spherical surface using multi-replication process. J Microelectromech Syst 24

  • Sun H, Deng S, Cui X, Lu M (2014) Fabrication of microlens arrays with varied focal lengths on curved surfaces using an electrostatic deformed template. J Micromech Microeng 24(6):065008

    Article  Google Scholar 

  • Tanida J, Kumagai T, Yamada K, Miyatake S, Ishida K, Morimoto T, Kondou N, Miyazaki D, Ichioka Y (2001) Thin observation module by bound optics (TOMBO): concept and experimental verification. Appl Opt 40:1806–1813

    Article  Google Scholar 

  • Tearney GJ, Yoshimoto K, Wang TD, Yamada K, Sasaki N, Takeda M, Shimizu S, Nagakura T, Takahashi H, Ohno Y (2013) Evaluation of a compound eye type tactile endoscope. Proc of SPIE 8575:85750Z

    Article  Google Scholar 

  • Thienpont H, Moens E, Van Daele P, Meuret Y, Ottevaere H, Mohr J, Zappe H, Sarkar M, San Segundo Bello D, Merken P, Thienpont H (2010) An insect eye-based image sensor with very large field of view. Micro-Optics

  • Thinès G (1982) Handbook of sensory physiology volume vii, 6a: invertebrate photoreceptors (edited by h. autrum); volume vii, 6b: invertebrate visual centers and behavior (i) (edited by h. autrum); volume viii: perception (edited by richard held, h.w. leibowitz and h.l. teuber). Springer Verlag, Berlin, Heidelberg, New York. 1979, 729 pp. 344 figures; 1981, 629 pp. 319 figures; 1978, 993 pp. 254 figures and 7 anaglyphs, respectively. Behav Processes, 7(4), 387–390.

  • Tian A, Hou X, Bian H, Yang Q, Li M, Chen F (2019) Fabrication of close-packed microlens array with superhydrophobicity and high imaging performance. In: The Third International Conference on Photonics and Optical Engineering,

  • Vinna H-TH, Hsieh J-L, Su G-DJ (2011) Design and fabrication of long focal length microlens arrays. Opt Commun 284:5225–5230

    Article  Google Scholar 

  • Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature 424:852–855

    Article  Google Scholar 

  • Waldbaur A, Waterkotte B, Schmitz K, Rapp BE (2012) Maskless projection lithography for the fast and flexible generation of grayscale protein patterns. Small 8(10):1570–1578

    Article  Google Scholar 

  • Wang et al (2012) Biomimetic compound eye with a high numerical aperture and anti-reflective nanostructures on curved surfaces. Opt Lett 37:2397

    Article  Google Scholar 

  • Wang L, Liu H, Jiang W, Li R, Li F, Yang Z, Yin L, Shi Y, Chen B (2015) Capillary number encouraged the construction of smart biomimetic eyes. J Mater Chem C 3(23):5896–5902

    Article  Google Scholar 

  • Wang M, Wang T, Shen H, Zhao J, Zhang Z, Du J, Yu W (2016) Subtle control on hierarchic reflow for the simple and massive fabrication of biomimetic compound eye arrays in polymers for imaging at a large field of view. J Mater Chem C 4(1):108–112

    Article  Google Scholar 

  • Wang Y, Shi C, Liu C, Yu X, Xu H, Wang T, Qiao Y, Yu W (2019) Fabrication and characterization of a polymeric curved compound eye. J Micromech Microeng 29(5):055008

    Article  Google Scholar 

  • Wang W, Li J, Li R, Li B, Mei X, Sun X (2019) Fabrication of hierarchical micro/nano compound eyes. ACS Appl Mater Interfaces 11(37):34507–34516

    Article  Google Scholar 

  • Wu M-H, Park C, Whitesides GM (2002) Fabrication of arrays of microlenses with controlled profiles using gray-scale microlens projection photolithography. Langmuir 18:9312–9318

    Article  Google Scholar 

  • Wu H, Odom TW, Chiu DT, Whitesides GM (2003) Fabrication of complex three-dimensional microchannel systems in PDMS. J Am Chem Soc 125:554–559

    Article  Google Scholar 

  • Wu D, Wang J-N, Niu L-G, Zhang XL, Wu SZ, Chen Q-D, Lee LP, Sun HB (2014) Bioinspired fabrication of high-quality 3D artificial compound eyes by voxel-modulation femtosecond laser writing for distortion-free wide-field-of-view imaging. Adv Opt Mater 2(8):751–758

    Article  Google Scholar 

  • Wu S, Jiang T, Zhang G, Schoenemann B, Neri F, Zhu M, Bu C, Han J, Kuhnert K-D (2016) Artificial compound eye: a survey of the state-of-the-art. Artif Intell Rev 48(4):573–603

    Article  Google Scholar 

  • Xiong G-R, Han G-Z, Sun C, Xu H, Wei H-m, Gu Z-Z (2009) Phototunable microlens array based on polymer dispersed liquid crystals. Adv Funct Mater 19(7):1082–1086

    Article  Google Scholar 

  • Xu H, Lu N, Shi G, Qi D, Yang B, Li H, Xu W, Chi L (2011) Biomimetic antireflective hierarchical arrays. Langmuir 27(8):4963–4967

    Article  Google Scholar 

  • Yang SM, Hn M, Ozin GA (2002) Opal circuits of lightðplanarized microphotonic crystal chi. Adv Funct Mater 12:425–431

    Article  Google Scholar 

  • Yao J, Yan X, Lu G, Zhang K, Chen X, Jiang L, Yang B (2004) Patterning colloidal crystals by lift-up soft lithography. Adv Mater 16(1):81–84

    Article  Google Scholar 

  • Zhang Z, Gao Y, Luo N, Zhong K (2016) Fast fabrication of curved microlens array using DMD-based lithography. AIP Adv. 6(1):015319

    Article  Google Scholar 

  • Zhang K, Jung YH, Mikael S, Seo JH, Kim M, Mi H, Zhou H, Xia Z, Zhou W, Gong S, Ma Z (2017) Origami silicon optoelectronics for hemispherical electronic eye systems. Nat Commun 8(1):1782

    Article  Google Scholar 

  • Zhang T, Li P, Yu H, Wang F, Wang X, Yang T, Yang W, Li WJ, Wang Y, Liu L (2020) Fabrication of flexible microlens arrays for parallel super-resolution imaging. Appl Surf Sci 504:144375

    Article  Google Scholar 

  • Zhu T-F, Fu J, Lin F, Zhang M, Wang W, Wen F, Zhang X, Bu R, Zhang J, Zhu J, Wang J, Wang H-X, Hou X (2017) Fabrication of diamond microlens arrays for monolithic imaging homogenizer. Diam Relat Mater 80:54–58

    Article  Google Scholar 

  • Zhu TF, Liu Z, Liu Z, Li F, Zhang M, Wang W, Wen F, Wang J, Bu R, Zhang J, Wang HX (2017) Fabrication of monolithic diamond photodetector with microlenses. Opt Express 25(25):31586–31594

    Article  Google Scholar 

  • Zhu T-F, Fu J, Liu Z, Liang Y, Wang W, Wen F, Zhang J, Wang H-X (2018) Investigation of the occupancy ratio dependence for microlens arrays on diamond. RSC Adv 8(52):29544–29547

    Article  Google Scholar 

Download references

Acknowledgements

The authors grateful to the Center for Advanced Electronic Materials and Devices (AEMD). This work was supported by Joint Foundation of Pre-research of Equipment and Ministry of Education (6141A02022637).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, Y., Han, Q., Niu, J. et al. Microfabrication of bioinspired curved artificial compound eyes: a review. Microsyst Technol 27, 3241–3262 (2021). https://doi.org/10.1007/s00542-020-05090-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-05090-3

Navigation