Skip to main content
Log in

Temperature drift-aware material selection of composite piezoresistive micro-cantilevers using Ashby’s methodology

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, we devise an approach for material selection of constituent layers of a composite piezoresistive cantilever sensor using Ashby’s methodology. A rational choice of the constituent materials of a piezoresistive cantilever sensor becomes critical not only due to its multi-layered hetero structure but also due to the interdependence of material properties and geometrical parameters in governing its performance and reliability. Material selection is performed by identifying the performance metrics that govern the sensor performance and depict the interplay between the material constants and geometrical parameters. Here, apart from considering the coupled effects of electro-mechanical parameters we have also incorporated the impact of joule heating induced self-heating effects in the material selection process. Further, the material selection process is validated by computing the performance metrics of different sensors with same resonant frequency using analytical models. Results show that a silicon cantilever with a doped p-type piezoresistor, a silicon dioxide isolation layer and a gold immobilization layer is relatively better considering performance characteristics and reliability as compared to an SU-8 polymeric and other solid-state semiconductor based piezoresistive cantilever surface stress sensors, especially when joule heating induced inaccuracy is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alpuim P, Chu V, Conde JP (2002) Piezoresistive sensors on plastic substrates using doped microcrystalline silicon. IEEE Sens J 2:336–341

    Article  Google Scholar 

  • Ansari MZ, Cho C (2012) A conduction–convection model for self-heating in Piezoresistive microcantilever biosensors. Sens Actuators A 175:19–27

    Article  Google Scholar 

  • Ashby MF (1992) Material selection in mechanical design, 1st edn. Pergamon press, Oxford

    Google Scholar 

  • Bonthu MK, Sharma AK (2018) An investigation of dielectric material selection of RF-MEMS switches using Ashby’s methodology for RF applications. Microsyst Technol 24(4):1803–1809

    Article  Google Scholar 

  • Chiamori HC, Brown JW, Adhiprakasha EV, Hantsoo ET, Straalsund JB, Melosh NA, Pruitt BL (2008) Suspension of nanoparticles in SU-8: Processing and characterization of nanocomposite polymers. Microelectron J 39:228–236

    Article  Google Scholar 

  • Chui BW, Aeschimann L, Akiyama T, Staufer U, de Rooij NF (2007) Advanced temperature compensation for piezoresistive sensors based on crystallographic orientation. Rev Sci Instrum 78:043706

    Article  Google Scholar 

  • Fernandez RE, Stolyarova S, Chadha A, Bhattacharya E, Nemirovsky Y (2009) MEMS composite porous silicon/polysilicon cantilever sensor for enhanced triglycerides biosensing. IEEE Sens J 9:1660–1666

    Article  Google Scholar 

  • Geisberger AA, Sarkar N, Matthew E, Skidmore GD (2003) Electrothermal properties and modeling of polysilicon microthermal actuators. J Microelectromech Syst 12:513–523

    Article  Google Scholar 

  • Gupta N, Ashwin R (2018) Material selection methodology for radio frequency (RF) microelectromechanical (MEMS) capacitive shunt switch. Microsyst Technol. https://doi.org/10.1007/s00542-018-3761-1

    Article  Google Scholar 

  • Harley JA, Kenny TW (2000) 1/f noise considerations for the design and process optimization of piezoresistive cantilevers. J Microelectromech Syst 9:226–235

    Article  Google Scholar 

  • Hooge FN (1969) 1/f noise is no surface effect. Phys Lett A 29:139–140

    Article  Google Scholar 

  • Hopcroft MA, Nix WD, Kenny TW (2010) What is the Young’s modulus of silicon. J Microelectromech Syst 19:229–238

    Article  Google Scholar 

  • Jiguet S, Bertsch A, Hofmann H, Renaud P (2004) SU-8 silver photosensitive nanocomposite. Adv Eng Mater 6:719–724

    Article  Google Scholar 

  • Johansson A, Hansen O, Hales J, Boisen A (2006) Temperature effects in Au piezoresistors integrated in SU-8 cantilever chips. J Micromech Microeng 16:2564–2569

    Article  Google Scholar 

  • Kale NS, Nag S, Pinto R, Rao VR (2009) Fabrication and characterization of polymeric microcantilever with encapsulated hotwire CVD polysilicon piezoresistor. J Microelectromech Syst 18:79–87

    Article  Google Scholar 

  • Kandpal M, Adami A, Giacomozzi F, Zen M, Rao VR, Lorenzelli L (2017) Theoretical and experimental analysis of residual stress mitigation in piezoresistive silicon nitride cantilever. In: AISEM annual conference on sensors and microsystems, pp 229–235

  • Katada A, Buys YF, Tominaga Y, Asai S, Sumita M (2005) Resistivity control in the semiconductive region for carbon-black-filled polymer composites Colliod Polymer. Science 283:367–374

    Google Scholar 

  • Khemthongcharoen N, Wonglumsom W, Suppat A, Jaruwongrungsee K, Tuantranont A, Promptmas C (2015) Piezoresistive microcantilever-based DNA sensor for sensitive detection of pathogenic Vibrio cholerae O1 in food sample. Biosens Bioelectron 15:347–353

    Article  Google Scholar 

  • Lee J, Goericke F, King WP (2008) Temperature-dependent thermomechanical noise spectra of doped silicon microcantilevers. Sens Actuators A 145:37–43

    Article  Google Scholar 

  • Liu HY, Li WH, Zhou ZF, Huang QA (2014) In-situ determination of the coefficient of thermal expansion of polysilicon thin films using micro-rotating structures. Thin Solid Films 552:184–191

    Article  Google Scholar 

  • Loui A, Goericke FT, Ratto TV, Lee J, Hart BR, King WP (2008) The effect of piezoresistive microcantilever geometry on the cantilever sensitivity during surface stress chemical sensing. Sens Actuator A 147:516–521

    Article  Google Scholar 

  • Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105:1103–1169

    Article  Google Scholar 

  • Mathew R, Sankar AR (2015) Design of a triangular platform piezoresistive affinity microcantilever sensor for biochemical sensing applications. J Phys D Appl Phys 48:205402

    Article  Google Scholar 

  • Mathew R, Sankar AR (2016) Numerical study on the influence of buried oxide layer of SOI wafers on the terminal characteristics of a micro/nano cantilever biosensor with an integrated piezoresistor. Biomed Phys Eng Express 2:055012

    Article  Google Scholar 

  • Mathew R, Sankar AR (2017) silico modeling and investigation of self-heating effects in composite nano cantilever biosensors with integrated piezoresistors. AIP Adv 7:035108

    Article  Google Scholar 

  • Mathew R, Sankar AR (2018a) A review on surface stress-based miniaturized piezoresistive SU-8 polymeric cantilever. Sens Nano Micro Lett 1:35

    Article  Google Scholar 

  • Mathew R, Sankar AR (2018b) Piezoresistive composite silicon dioxide nanocantilever surface stress sensor: design and optimization. J Nanosci Nanotechnol 18:3387–3397

    Article  Google Scholar 

  • McConnell AD, Uma S, Goodson KE (2001) Thermal conductivity of doped polysilicon layers. J Microelectromech Syst 10:360–369

    Article  Google Scholar 

  • Rasmussen PA, Thaysen J, Hansen O, Eriksen SC, Boisen A (2003) Optimised cantilever biosensor with piezoresistive read-out. Ultramicroscopy 97:371–376

    Article  Google Scholar 

  • Sassolas A, Blum LJ, Bouvier BDL (2012) Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv 30:489–511

    Article  Google Scholar 

  • Srikar VT, Spearing SM (2003) Material selection for microfabricated electrostatic actuators. Sens Actuators A 102:279–285

    Article  Google Scholar 

  • Tan ZO, Zhang NH, Meng WL, Tang HS (2016) Mechanism for invalid detection of microcantilever-DNA biosensors due to environmental changes. J Phys D Appl Phys 49:225402

    Article  Google Scholar 

  • Thaysen J, Yalcinkaya AD, Vettiger P, Menon A (2002) Polymer based stress sensor with integrated readout. J Phys D Appl Phys 35:2698–2703

    Article  Google Scholar 

  • Wang Z, Yue R, Zhang R, Liu L (2005) Design and optimization of laminated piezoresistive microcantilever sensors. Sens Actuators A 120:325–336

    Article  Google Scholar 

  • Wee KW, Kang GY, Park J, Kang JY, Yoon DS, Park JH, Kim TS (2005) Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing microcantilever. Biosens Bioelectron 20:1932–1938

    Article  Google Scholar 

  • Wouters K, Puers R (2010) Diffusing. and swelling in SU-8: insight in material properties and processing. J Micromech Microeng 20:095013

    Article  Google Scholar 

  • Yang SM, Yin TI, Chang C (2007) A biosensor chip by CMOS process for surface stress measurement in bioanalyte. Sens Actuators B 123:707–714

    Article  Google Scholar 

  • Yang SM, Chang C, Yin TI, Kuo PL (2008) DNA hybridization measurement by self-sensing piezoresistive microcantilevers in CMOS biosensor. Sens Actuators B Chem 130:674–681

    Article  Google Scholar 

  • Yang Y, Chen Y, Xu P, Li X (2010) Quad-cantilever microsensors with a low cost single-sided micro-machining technique for trace chemical vapor detection. Microelectron Eng 87:2317–2322

    Article  Google Scholar 

  • Yang T, Li X, Chen Y, Lee DW, Zuo G (2011) Adsorption induced surface-stress sensing signal originating from both vertical interface effects and intermolecular lateral interactions. Analyst 136:5261–5269

    Article  Google Scholar 

  • Zhang N, Xie J, Guers M, Varadan VK (2003) Chemical bonding multiwalled carbon nanotube to SU-8 via ultrasonic irradiation. Smart Mater Struct 12:260

    Article  Google Scholar 

  • Zhou Y, Wang Z, Zhang Q, Ruan W, Liu L (2009) A front-side released single crystalline silicon piezoresistive microcantilever sensor. IEEE Sens J 9:246–254

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India under the Extramural Research (EMR) Grant no. SB/S3/EECE/076/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ravi Sankar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathew, R., Sankar, A.R. Temperature drift-aware material selection of composite piezoresistive micro-cantilevers using Ashby’s methodology. Microsyst Technol 27, 2647–2660 (2021). https://doi.org/10.1007/s00542-020-05013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-05013-2

Navigation