Skip to main content
Log in

Noise analysis of double gate composite InAs based HEMTs for high frequency applications

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The quantitative analysis of microwave noise available in the double gate (DG) high electron transistors of mobility (HEMT) is reported in this paper. For this analysis, the InGaAs/InAs/InGaAs DG-HEMT composite channel delivers an eminent low analog/RF signals and noise output. The proposed 30 nm gate length system with high Indium (x = 0.3) concentrations in the channel leads to a maximum frequency of oscillation (fmax) of 785 GHz and a cut-off frequency (fT) of about 586 GHz. Using the Green’s method in the TCAD simulator tool, the microwave noise of electrodes is characterized by spectral density under different biasing conditions are evaluated. In accordance with the equivalent noise resistant of 480Ω approximately around 586 GHz this proposed device displays a minimum noise figure (NFmin) of 1.62 dB for Vgs = 0.3 V and Vds = 0.5 V which is relative low. This study demonstrates that DG-HEMT is well suited to applications that involve low power and low noise with higher levels of indium in the channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Ajayan J, Nirmal D (2016) 20 nm high performance enhancement mode InP HEMT with heavily doped S/D regions for future THz applications. Superlattices Microstruct 100:526–534

    Article  Google Scholar 

  • Balandin A et al (1999) Low flicker-noise GaN/AlGaN heterostructure field-effect transistors for microwave communications. IEEE Trans Microw Theory Tech 47(8):1413–1417

    Article  Google Scholar 

  • Bhattacharya M, Jogi J, Gupta RS, Gupta M (2012) An accurate charge-control-based approach for noise performance assessment of a symmetric tied-gate InAlAs/InGaAs DG-HEMT. IEEE Trans Electron Devices 59:1644–1652

    Article  Google Scholar 

  • Bollaert S, Cordier Y, Zaknoune M, Happy H, Hoel V, Lepilliet S, Théron D, Cappy A (2000) The indium content in metamorphic InxAl1−xAs/InxGa1−xAs HEMTs on GaAs substrate: a new structure parameter. Solid State Electron 44:1021–1027

    Article  Google Scholar 

  • Bonani F, Guerrieri SD, Ghione G, Pirola M (2001) A TCAD approach to the physics-based modeling of frequency conversion and noise in semiconductor devices under large-signal forced operation. IEEE Trans Electron Devices 48(5):966–977

    Article  Google Scholar 

  • Boos JB, Kruppa W, Bennett BR, Park D, Kirchoefer SW, Bass R, Dietrich HB (1998) AlSb/InAs HEMT’s for low-voltage, high-speed applications. IEEE Trans Electron Devices 45:1869–1875

    Article  Google Scholar 

  • Chang EY, Lin KC, Liu EH, Chang CY, Chen TH, Chen J (1994) Submicron T-shaped gate HEMT fabrication using deep-UV lithography. IEEE Electron Devices Lett 15(8):277–279

    Article  Google Scholar 

  • Chang C et al (2007) Investigation of impact ionization in InAs-channel HEMT for high-speed and low-power applications. IEEE Electron Device Lett 28(10):856–858

    Article  Google Scholar 

  • Chang EY, Kuo CI, Hsu HT, Chiang CY, Miyamoto Y (2013) InAs thin-channel high-electron-mobility transistors with very high current-gain cutoff frequency for emerging submillimeter-wave applications. Appl Phys Express 6:4–7

    Google Scholar 

  • Chen CH, Deen MJ (1998) High frequency noise of MOSFETs I Modeling. Solid State Electron 42:2069–2081

    Article  Google Scholar 

  • Dambrine G, Happy H, Danneville F, Cappy A (1993) A new method for on wafer noise measurement. IEEE Trans Microw Theory Tech 41:375–381

    Article  Google Scholar 

  • Daoudi M, Dhifallah I, Ouerghi A, Chtourou R (2012) Si-delta doping and spacer thickness effects on the electronic properties in Si-delta-doped AlGaAs/GaAs HEMT structures. Superlattices Microstruct 51:497–505

    Article  Google Scholar 

  • Endoh A, Watanabe I, Kasamatsu A, Mimura T (2013) Monte Carlo simulation of InAs HEMTs considering strain and quantum confinement effects. J Phys Conf Ser 454:12036

    Article  Google Scholar 

  • Fleetwood DM (2015) 1/F noise and defects in microelectronic materials and devices. IEEE Trans Nucl Sci 62(4):1462–1486

    Article  Google Scholar 

  • Ge J, Liu HG, Su TB, Cao YX, Jin Z (2012) Physical modeling based on hydrodynamic simulation for the design of InGaAs/InP double heterojunction bipolar transistors. Chin Phys B. 21:58501

    Article  Google Scholar 

  • Ghione G, Filicori F (1993) A computationally efficient unified approach to the numerical analysis of the sensitivity and noise of semiconductor devices. IEEE Trans Comput Aided Des Integr Circ Syst 12(3):425–438

    Article  Google Scholar 

  • Hsu SS et al (2002) Characterization and analysis of gate and drain low-frequency noise in AlGaN/GaN HEMTs. In: Proceedings. IEEE Lester Eastman Conference on High Performance Devices, Newark, DE, USA, 2002, pp 453–460

  • Jamal Deen M (2004) Editorial: noise in devices and circuits. IEE Proc Circ Devices Syst 151(2):93–94

    Article  Google Scholar 

  • Kim D, del Alamo JA (2008) Lateral and vertical scaling of In0.7Ga0.3AsHEMTs for post-Si-CMOS logic applications. IEEE Trans Electron Devices 55(10):2546–2553

    Article  Google Scholar 

  • Krishnamurthy S, Berding MA (2001) Full-band-structure calculation of Shockley-Read-Hall recombination rates in InAs. J Appl Phys 90:848–851

    Article  Google Scholar 

  • Kugler S (1988) Generation-recombination noise in the saturation regime of MODFET structures. IEEE Trans Electron Devices 35(5):623–628

    Article  Google Scholar 

  • Kuo CI, Hsu HT, Wu CY, Chang EY, Chen YL, Lim WC (2010) Improvement in RF performance of 40-nm InAs-channel based HEMTs using Pt gate sinking with two-step recess processes technology. Microelectron Eng 87:2625–2628

    Article  Google Scholar 

  • Lange MD et al (2008) InAs/InGaAs composite-channel HEMT on InP: Tailoring InGaAs thickness for performance. In: 2008 20th Int. Conf. Indium Phosphide Relat. Mater., 2008, pp 1–4

  • Lee S, Webb KJ, Tilak V, Eastman LF (2003) Intrinsic noise equivalent-circuit parameters for AlGaN/GaN HEMTs. IEEE Trans Microw Theory Tech 51(5):1567–1577

    Article  Google Scholar 

  • Lee J, Kuliev A, Kumar V, Schwindt R, Adesida I (2004) Microwave noise characteristics of AlGaN/GaN HEMTs on SiC substrates for broad-band low-noise amplifiers. IEEE Microwave Wirel Compon Lett 14(6):259–261

    Article  Google Scholar 

  • Liu Y, Zhuang Y (2015) A gate current 1/f noise model for GaN/AlGaN HEMTs. J Semicond 35:124005

    Article  Google Scholar 

  • Lombardi C, Manzini S, Saporito A, Vanzi M (1988) A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans Comput Aided Des Integr Circ Syst 7(11):1164–1171

    Article  Google Scholar 

  • Mohankumar N, Syamal B, Sarkar CK (2010) Influence of channel and gate engineering on the analog and RF performance of DG MOSFETs. IEEE Trans Electron Devices 57(4):820–826

    Article  Google Scholar 

  • Nsele SD, Tartarin JG, Escotte L, Piotrowicz S, Delage S (2015) InAlN/GaN HEMT technology for robust HF receivers: An overview of the HF and LF noise performance. In: 2015 Int. Conf. Noise Fluctuations, 2015, pp 1–4

  • Pardeshi H, Raj G, Pati SK, Mohankumar N, Sarkar CK (2012) Comparative assessment of III–V heterostructure and silicon underlap double gate MOSFETs. Semiconductors 46:1299–1303

    Article  Google Scholar 

  • Parveen J, Gupta M, Gupta RS (2013) Intrinsic admittance parameter for separate gate InA1As/InGaAs DG-HEMT for 100 nm gate length. In: 2013 IEEE Conf. Inf. Commun. Technol., 2013, pp 750–754

  • Poornachandran R, Mohankumar N, Saravanakumar R et al (2019) Analysis of microwave noise in an enhancement-mode dual-quantum-well InAs HEMT. J Comput Electron 18:1280–1290

    Article  Google Scholar 

  • Rodwell M et al (1999) Transferred-substrate HBT integrated circuits. Solid State Electron 43:1489–1495

    Article  Google Scholar 

  • Rumyantsev SL et al (2000) Effect of gate leakage current on noise properties of AlGaN/GaN field effect transistors. J Appl Phys 88:6726–6730

    Article  Google Scholar 

  • Saha SK (2015) Compact models for integrated circuit design: conventional transistors and beyond. CRC Press, Boca Raton, pp 41–42 (ch. 2, sec. 2.2.6.2)

    Google Scholar 

  • Saravana Kumar R, Mohanbabu A, Mohankumar N, Godwin Raj D (2018) Simulation of InGaAs Sub-channel DG-HEMTs for analogue/RF applications. Int J Electron 105(3):446–456 (ISSN : 0020-7217)

    Google Scholar 

  • Sengupta A, Islam A (2018) Comparative analysis of AlGaN/GaN high electron mobility transistor with sapphire and 4H-SiC substrate. Microsyst Technol 25:1927–1935

    Article  Google Scholar 

  • TCAD Sentaurus (2016) Sdevice User Guide, ver.K-2016, Synopsys

  • Tsai R, Barsky M, Boos JB, Bennett BR, Lee J, Papanicolaou NA, Magno R, Namba C, Liu PH, Park D, Grundbacher R, Gutierrez A (2003) Metamorphic AlSb/InAs HEMT for low-power, high-speed electronics. In: 25th Annu. Tech. Dig. 2003. IEEE Gall. Arsenide Integr. Circuit (GaAs IC) Symp., 2003, pp 294–297

  • Van Der Ziel A, Chenette ER (1978) Noise in solid state devices. Adv Electron Electron Phys 46:313–383. https://doi.org/10.1016/S0065-2539(08)60414-X

    Article  Google Scholar 

  • Vasallo BG, Wichmann N, Bollaert S, Roelens Y, Cappy A, Gonzalez T, Pardo D, Mateos J (2008) Comparison between the noise performance of double- and single-gate InP-based HEMTs. IEEE Trans Electron Devices 55:1535–1540

    Article  Google Scholar 

  • Wirth GI, Koh J, da Silva R, Thewes R, Brederlow R (2005) Modeling of statistical low-frequency noise of deep-submicrometer MOSFETs. IEEE Trans Electron Devices 52(7):1576–1588

    Article  Google Scholar 

  • Mohanbabu A, Saravana Kumar R, Mohankumar N (2017) Noise characterization of enhancement-mode AlGaN graded barrier MIS-HEMT devices. Superlattices Microstruct 112:604–618

    Article  Google Scholar 

  • Yao J, Lin Y, Hsu H, Yang K, Hsu H, Sze SM, Chang EY (2018) Evaluation of a 100-nm gate length E-Mode InAs high electron mobility transistor with Ti/Pt/Au Ohmic contacts and mesa sidewall channel etch for high-speed and low-power logic applications. IEEE J Electron Devices Soc. 6:797–802

    Article  Google Scholar 

  • Zhu Y, Wei C, Klimashov O, Li B, Zhang C, Tkachenko Y (2008) Gate Width Dependence of Noise Parameters and Scalable Noise Model for HEMTs. In: 2008 European Microwave Integrated Circuit Conference, Amsterdam, 2008, pp 298–301

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Poornachandran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poornachandran, R., Mohan Kumar, N., Saravana Kumar, R. et al. Noise analysis of double gate composite InAs based HEMTs for high frequency applications. Microsyst Technol 27, 4101–4109 (2021). https://doi.org/10.1007/s00542-020-04955-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-04955-x

Navigation